EfronSteinMetrics.java
- package org.drip.sequence.functional;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
- * calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
- * FX, and structured products.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three main modules:
- *
- * - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
- *
- * DROP Analytics Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Asset Backed Analytics
- * - XVA Analytics
- * - Exposure and Margin Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Transaction Cost Analytics
- *
- * DROP Numerical Core implements libraries for the following:
- * - Statistical Learning Library
- * - Numerical Optimizer Library
- * - Machine Learning Library
- * - Spline Builder Library
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>EfronSteinMetrics</i> contains the Variance-based non-exponential Sample Distribution/Bounding Metrics
- * and Agnostic Bounds related to the Functional Transformation of the specified Sequence.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/functional">Functional</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class EfronSteinMetrics {
- private org.drip.sequence.functional.MultivariateRandom _func = null;
- private org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] _aSSAM = null;
- private double[] demotedSequence (
- final double[] adblSequence,
- final int iDemoteIndex)
- {
- int iSequenceLength = adblSequence.length;
- double[] adblDemotedSequence = new double[iSequenceLength - 1];
- for (int i = 0; i < iSequenceLength; ++i) {
- if (i < iDemoteIndex)
- adblDemotedSequence[i] = adblSequence[i];
- else if (i > iDemoteIndex)
- adblDemotedSequence[i - 1] = adblSequence[i];
- }
- return adblDemotedSequence;
- }
- /**
- * EfronSteinMetrics Constructor
- *
- * @param func Multivariate Objective Function
- * @param aSSAM Array of the individual Single Sequence Metrics
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public EfronSteinMetrics (
- final org.drip.sequence.functional.MultivariateRandom func,
- final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM)
- throws java.lang.Exception
- {
- if (null == (_func = func) || null == (_aSSAM = aSSAM))
- throw new java.lang.Exception ("EfronSteinMetrics ctr: Invalid Inputs");
- int iNumVariable = _aSSAM.length;
- if (0 == iNumVariable)
- throw new java.lang.Exception ("EfronSteinMetrics ctr: Invalid Inputs");
- int iSequenceLength = _aSSAM[0].sequence().length;
- for (int i = 1; i < iNumVariable; ++i) {
- if (null == _aSSAM[i] || _aSSAM[i].sequence().length != iSequenceLength)
- throw new java.lang.Exception ("EfronSteinMetrics ctr: Invalid Inputs");
- }
- }
- /**
- * Retrieve the Multivariate Objective Function
- *
- * @return The Multivariate Objective Function Instance
- */
- public org.drip.function.definition.RdToR1 function()
- {
- return _func;
- }
- /**
- * Retrieve the Array of the Single Sequence Agnostic Metrics
- *
- * @return The Array of the Single Sequence Agnostic Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] sequenceMetrics()
- {
- return _aSSAM;
- }
- /**
- * Extract the Full Variate Array Sequence
- *
- * @param aSSAM Array of the individual Single Sequence Metrics
- *
- * @return The Full Variate Array Sequence
- */
- public double[][] variateSequence (
- final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM)
- {
- int iNumVariate = _aSSAM.length;
- if (null == aSSAM || aSSAM.length != iNumVariate) return null;
- int iSequenceSize = aSSAM[0].sequence().length;
- double[][] aadblVariateSequence = new double[iSequenceSize][iNumVariate];
- for (int iVariateIndex = 0; iVariateIndex < iNumVariate; ++iVariateIndex) {
- double[] adblVariate = aSSAM[iVariateIndex].sequence();
- for (int iSequenceIndex = 0; iSequenceIndex < iSequenceSize; ++iSequenceIndex)
- aadblVariateSequence[iSequenceIndex][iVariateIndex] = adblVariate[iSequenceIndex];
- }
- return aadblVariateSequence;
- }
- /**
- * Compute the Function Sequence Agnostic Metrics associated with the Variance of each Variate
- *
- * @return The Array of the Associated Sequence Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] variateFunctionVarianceMetrics()
- {
- int iNumVariate = _aSSAM.length;
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM = new
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[iNumVariate];
- for (int i = 0; i < iNumVariate; ++i) {
- if (null == (aSSAM[i] = _func.unconditionalTargetVariateMetrics (_aSSAM, i))) return null;
- }
- return aSSAM;
- }
- /**
- * Compute the Function Sequence Agnostic Metrics associated with the Variance of each Variate Using the
- * Supplied Ghost Variate Sequence
- *
- * @param aSSAMGhost Array of the Ghost Single Sequence Metrics
- *
- * @return The Array of the Associated Sequence Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] ghostVariateVarianceMetrics (
- final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAMGhost)
- {
- if (null == aSSAMGhost) return null;
- int iNumVariate = _aSSAM.length;
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM = new
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[iNumVariate];
- for (int i = 0; i < iNumVariate; ++i) {
- if (null == aSSAMGhost[i] || null == (aSSAM[i] = _func.ghostTargetVariateMetrics (_aSSAM, i,
- aSSAMGhost[i].sequence())))
- return null;
- }
- return aSSAM;
- }
- /**
- * Compute the Function Sequence Agnostic Metrics associated with each Variate using the specified Ghost
- * Symmetric Variable Copy
- *
- * @param aSSAMGhost Array of the Ghost Single Sequence Metrics
- *
- * @return The Array of the Associated Sequence Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] symmetrizedDifferenceSequenceMetrics (
- final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAMGhost)
- {
- double[][] aadblSequenceVariate = variateSequence (_aSSAM);
- double[][] aadblGhostSequenceVariate = variateSequence (aSSAMGhost);
- if (null == aadblGhostSequenceVariate || aadblSequenceVariate.length !=
- aadblGhostSequenceVariate.length || aadblSequenceVariate[0].length !=
- aadblGhostSequenceVariate[0].length)
- return null;
- int iSequenceSize = _aSSAM[0].sequence().length;
- int iNumVariate = _aSSAM.length;
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAMFunction = new
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[iNumVariate];
- try {
- for (int iVariateIndex = 0; iVariateIndex < iNumVariate; ++iVariateIndex) {
- double[] adblSymmetrizedFunctionDifference = new double[iSequenceSize];
- for (int iSequenceIndex = 0; iSequenceIndex < iSequenceSize; ++iSequenceIndex) {
- double[] adblVariate = aadblSequenceVariate[iSequenceIndex];
- adblSymmetrizedFunctionDifference[iSequenceIndex] = _func.evaluate (adblVariate);
- double dblVariateOrig = adblVariate[iVariateIndex];
- adblVariate[iVariateIndex] = aadblGhostSequenceVariate[iSequenceIndex][iVariateIndex];
- adblSymmetrizedFunctionDifference[iSequenceIndex] -= _func.evaluate (adblVariate);
- adblVariate[iVariateIndex] = dblVariateOrig;
- }
- aSSAMFunction[iVariateIndex] = new org.drip.sequence.metrics.SingleSequenceAgnosticMetrics
- (adblSymmetrizedFunctionDifference, null);
- }
- return aSSAMFunction;
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Function Sequence Agnostic Metrics associated with each Variate around the Pivot Point
- * provided by the Pivot Function
- *
- * @param funcPivot The Pivot Function
- *
- * @return The Array of the Associated Sequence Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] pivotedDifferenceSequenceMetrics (
- final org.drip.sequence.functional.MultivariateRandom funcPivot)
- {
- if (null == funcPivot) return null;
- double[][] aadblSequenceVariate = variateSequence (_aSSAM);
- int iSequenceSize = _aSSAM[0].sequence().length;
- int iNumVariate = _aSSAM.length;
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAMFunction = new
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[iNumVariate];
- try {
- for (int iVariateIndex = 0; iVariateIndex < iNumVariate; ++iVariateIndex) {
- double[] adblSymmetrizedFunctionDifference = new double[iSequenceSize];
- for (int iSequenceIndex = 0; iSequenceIndex < iSequenceSize; ++iSequenceIndex) {
- double[] adblVariate = aadblSequenceVariate[iSequenceIndex];
- adblSymmetrizedFunctionDifference[iSequenceIndex] = _func.evaluate (adblVariate) -
- funcPivot.evaluate (demotedSequence (adblVariate, iVariateIndex));
- }
- aSSAMFunction[iVariateIndex] = new org.drip.sequence.metrics.SingleSequenceAgnosticMetrics
- (adblSymmetrizedFunctionDifference, null);
- }
- return aSSAMFunction;
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Multivariate Variance Upper Bound using the Martingale Differences Method
- *
- * @return The Multivariate Variance Upper Bound using the Martingale Differences Method
- *
- * @throws java.lang.Exception Thrown if the Upper Bound cannot be calculated
- */
- public double martingaleVarianceUpperBound()
- throws java.lang.Exception
- {
- int iNumVariate = _aSSAM.length;
- double dblVarianceUpperBound = 0.;
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM = variateFunctionVarianceMetrics();
- if (null == aSSAM || iNumVariate != aSSAM.length)
- throw new java.lang.Exception
- ("EfronSteinMetrics::martingaleVarianceUpperBound => Cannot compute Univariate Variance Metrics");
- for (int i = 0; i < iNumVariate; ++i)
- dblVarianceUpperBound += aSSAM[i].empiricalExpectation();
- return dblVarianceUpperBound;
- }
- /**
- * Compute the Variance Upper Bound using the Ghost Variables
- *
- * @param aSSAMGhost Array of the Ghost Single Sequence Metrics
- *
- * @return The Variance Upper Bound using the Ghost Variables
- *
- * @throws java.lang.Exception Thrown if the Upper Bound cannot be calculated
- */
- public double ghostVarianceUpperBound (
- final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAMGhost)
- throws java.lang.Exception
- {
- int iNumVariate = _aSSAM.length;
- double dblVarianceUpperBound = 0.;
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM = ghostVariateVarianceMetrics
- (aSSAMGhost);
- if (null == aSSAM || iNumVariate != aSSAM.length)
- throw new java.lang.Exception
- ("EfronSteinMetrics::ghostVarianceUpperBound => Cannot compute Target Ghost Variance Metrics");
- for (int i = 0; i < iNumVariate; ++i)
- dblVarianceUpperBound += aSSAM[i].empiricalExpectation();
- return dblVarianceUpperBound;
- }
- /**
- * Compute the Efron-Stein-Steele Variance Upper Bound using the Ghost Variables
- *
- * @param aSSAMGhost Array of the Ghost Single Sequence Metrics
- *
- * @return The Efron-Stein-Steele Variance Upper Bound using the Ghost Variables
- *
- * @throws java.lang.Exception Thrown if the Upper Bound cannot be calculated
- */
- public double efronSteinSteeleBound (
- final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAMGhost)
- throws java.lang.Exception
- {
- int iNumVariate = _aSSAM.length;
- double dblVarianceUpperBound = 0.;
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM =
- symmetrizedDifferenceSequenceMetrics (aSSAMGhost);
- if (null == aSSAM || iNumVariate != aSSAM.length)
- throw new java.lang.Exception
- ("EfronSteinMetrics::efronSteinSteeleBound => Cannot compute Symmetrized Difference Metrics");
- for (int i = 0; i < iNumVariate; ++i)
- dblVarianceUpperBound += aSSAM[i].empiricalRawMoment (2, false);
- return 0.5 * dblVarianceUpperBound;
- }
- /**
- * Compute the Function Variance Upper Bound using the supplied Multivariate Pivoting Function
- *
- * @param funcPivot The Custom Multivariate Pivoting Function
- *
- * @return The Function Variance Upper Bound using the supplied Multivariate Pivot Function
- *
- * @throws java.lang.Exception Thrown if the Variance Upper Bound cannot be calculated
- */
- public double pivotVarianceUpperBound (
- final org.drip.sequence.functional.MultivariateRandom funcPivot)
- throws java.lang.Exception
- {
- int iNumVariate = _aSSAM.length;
- double dblVarianceUpperBound = 0.;
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM = pivotedDifferenceSequenceMetrics
- (funcPivot);
- if (null == aSSAM || iNumVariate != aSSAM.length)
- throw new java.lang.Exception
- ("EfronSteinMetrics::pivotVarianceUpperBound => Cannot compute Pivoted Difference Metrics");
- for (int i = 0; i < iNumVariate; ++i)
- dblVarianceUpperBound += aSSAM[i].empiricalRawMoment (2, false);
- return 0.5 * dblVarianceUpperBound;
- }
- /**
- * Compute the Multivariate Variance Upper Bound using the Bounded Differences Support
- *
- * @return The Multivariate Variance Upper Bound using the Bounded Differences Support
- *
- * @throws java.lang.Exception Thrown if the Upper Bound cannot be calculated
- */
- public double boundedVarianceUpperBound()
- throws java.lang.Exception
- {
- if (!(_func instanceof org.drip.sequence.functional.BoundedMultivariateRandom))
- throw new java.lang.Exception
- ("EfronSteinMetrics::boundedVarianceUpperBound => Invalid Bounded Metrics");
- int iNumVariate = _aSSAM.length;
- double dblVarianceUpperBound = 0.;
- org.drip.sequence.functional.BoundedMultivariateRandom boundedFunc =
- (org.drip.sequence.functional.BoundedMultivariateRandom) _func;
- for (int i = 0; i < iNumVariate; ++i)
- dblVarianceUpperBound += boundedFunc.targetVariateVarianceBound (i);
- return 0.5 * dblVarianceUpperBound;
- }
- /**
- * Compute the Multivariate Variance Upper Bound using the Separable Variance Bound
- *
- * @return The Multivariate Variance Upper Bound using the Separable Variance Bound
- *
- * @throws java.lang.Exception Thrown if the Upper Bound cannot be calculated
- */
- public double separableVarianceUpperBound()
- throws java.lang.Exception
- {
- if (!(_func instanceof org.drip.sequence.functional.SeparableMultivariateRandom))
- throw new java.lang.Exception
- ("EfronSteinMetrics::separableVarianceUpperBound => Invalid Bounded Metrics");
- int iNumVariate = _aSSAM.length;
- double dblVarianceUpperBound = 0.;
- org.drip.sequence.functional.SeparableMultivariateRandom separableFunc =
- (org.drip.sequence.functional.SeparableMultivariateRandom) _func;
- for (int i = 0; i < iNumVariate; ++i)
- dblVarianceUpperBound += separableFunc.targetVariateVariance (i);
- return 0.5 * dblVarianceUpperBound;
- }
- }