IdempotentUnivariateRandom.java

  1. package org.drip.sequence.functional;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
  13.  *      calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
  14.  *      FX, and structured products.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three main modules:
  19.  *  
  20.  *  - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
  23.  *
  24.  *  DROP Analytics Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Asset Backed Analytics
  27.  *  - XVA Analytics
  28.  *  - Exposure and Margin Analytics
  29.  *
  30.  *  DROP Portfolio Core implements libraries for the following:
  31.  *  - Asset Allocation Analytics
  32.  *  - Transaction Cost Analytics
  33.  *
  34.  *  DROP Numerical Core implements libraries for the following:
  35.  *  - Statistical Learning Library
  36.  *  - Numerical Optimizer Library
  37.  *  - Machine Learning Library
  38.  *  - Spline Builder Library
  39.  *
  40.  *  Documentation for DROP is Spread Over:
  41.  *
  42.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  43.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  44.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  45.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  46.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  47.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  48.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  49.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  50.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  51.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  52.  *
  53.  *  Licensed under the Apache License, Version 2.0 (the "License");
  54.  *      you may not use this file except in compliance with the License.
  55.  *  
  56.  *  You may obtain a copy of the License at
  57.  *      http://www.apache.org/licenses/LICENSE-2.0
  58.  *  
  59.  *  Unless required by applicable law or agreed to in writing, software
  60.  *      distributed under the License is distributed on an "AS IS" BASIS,
  61.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  62.  *  
  63.  *  See the License for the specific language governing permissions and
  64.  *      limitations under the License.
  65.  */

  66. /**
  67.  * <i>IdempotentUnivariateRandom</i> contains the Implementation of the OffsetIdempotent Objective Function
  68.  * dependent on Univariate Random Variable.
  69.  *
  70.  * <br><br>
  71.  *  <ul>
  72.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
  73.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
  74.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
  75.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/functional">Functional</a></li>
  76.  *  </ul>
  77.  * <br><br>
  78.  *
  79.  * @author Lakshmi Krishnamurthy
  80.  */

  81. public class IdempotentUnivariateRandom extends org.drip.function.r1tor1.OffsetIdempotent {
  82.     private org.drip.measure.continuous.R1Univariate _dist = null;

  83.     /**
  84.      * IdempotentUnivariateRandom Constructor
  85.      *
  86.      * @param dblOffset The Idempotent Offset
  87.      * @param dist The Underlying Distribution
  88.      *
  89.      * @throws java.lang.Exception Thrown if the Inputs are invalid
  90.      */

  91.     public IdempotentUnivariateRandom (
  92.         final double dblOffset,
  93.         final org.drip.measure.continuous.R1Univariate dist)
  94.         throws java.lang.Exception
  95.     {
  96.         super (dblOffset);

  97.         _dist = dist;
  98.     }

  99.     /**
  100.      * Generate the Function Metrics for the specified Variate Sequence and its corresponding Weight
  101.      *
  102.      * @param adblVariateSequence The specified Variate Sequence
  103.      * @param adblVariateWeight The specified Variate Weight
  104.      *
  105.      * @return The Function Sequence Metrics
  106.      */

  107.     public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics sequenceMetrics (
  108.         final double[] adblVariateSequence,
  109.         final double[] adblVariateWeight)
  110.     {
  111.         if (null == adblVariateSequence || null == adblVariateWeight) return null;

  112.         int iNumVariate = adblVariateSequence.length;
  113.         double[] adblFunctionSequence = new double[iNumVariate];

  114.         if (0 == iNumVariate || iNumVariate != adblVariateWeight.length) return null;

  115.         try {
  116.             for (int i = 0; i < iNumVariate; ++i)
  117.                 adblFunctionSequence[i] = adblVariateWeight[i] * evaluate (adblVariateSequence[i]);

  118.             return new org.drip.sequence.metrics.SingleSequenceAgnosticMetrics (adblFunctionSequence, null);
  119.         } catch (java.lang.Exception e) {
  120.             e.printStackTrace();
  121.         }

  122.         return null;
  123.     }

  124.     /**
  125.      * Generate the Function Metrics for the specified Variate Sequence
  126.      *
  127.      * @param adblVariateSequence The specified Variate Sequence
  128.      *
  129.      * @return The Function Sequence Metrics
  130.      */

  131.     public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics sequenceMetrics (
  132.         final double[] adblVariateSequence)
  133.     {
  134.         if (null == adblVariateSequence) return null;

  135.         int iNumVariate = adblVariateSequence.length;
  136.         double[] adblVariateWeight = new double[iNumVariate];

  137.         for (int i = 0; i < iNumVariate; ++i)
  138.             adblVariateWeight[i] = 1.;

  139.         return sequenceMetrics (adblVariateSequence, adblVariateWeight);
  140.     }

  141.     /**
  142.      * Generate the Function Metrics using the Underlying Variate Distribution
  143.      *
  144.      * @return The Function Sequence Metrics
  145.      */

  146.     public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics sequenceMetrics()
  147.     {
  148.         if (null == _dist) return null;

  149.         org.drip.numerical.common.Array2D a2DHistogram = _dist.histogram();

  150.         return null == a2DHistogram ? null : sequenceMetrics (a2DHistogram.x(), a2DHistogram.y());
  151.     }

  152.     /**
  153.      * Retrieve the Underlying Distribution
  154.      *
  155.      * @return The Underlying Distribution
  156.      */

  157.     public org.drip.measure.continuous.R1Univariate underlyingDistribution()
  158.     {
  159.         return _dist;
  160.     }
  161. }