IdempotentUnivariateRandom.java
- package org.drip.sequence.functional;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
- * calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
- * FX, and structured products.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three main modules:
- *
- * - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
- *
- * DROP Analytics Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Asset Backed Analytics
- * - XVA Analytics
- * - Exposure and Margin Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Transaction Cost Analytics
- *
- * DROP Numerical Core implements libraries for the following:
- * - Statistical Learning Library
- * - Numerical Optimizer Library
- * - Machine Learning Library
- * - Spline Builder Library
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>IdempotentUnivariateRandom</i> contains the Implementation of the OffsetIdempotent Objective Function
- * dependent on Univariate Random Variable.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/functional">Functional</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class IdempotentUnivariateRandom extends org.drip.function.r1tor1.OffsetIdempotent {
- private org.drip.measure.continuous.R1Univariate _dist = null;
- /**
- * IdempotentUnivariateRandom Constructor
- *
- * @param dblOffset The Idempotent Offset
- * @param dist The Underlying Distribution
- *
- * @throws java.lang.Exception Thrown if the Inputs are invalid
- */
- public IdempotentUnivariateRandom (
- final double dblOffset,
- final org.drip.measure.continuous.R1Univariate dist)
- throws java.lang.Exception
- {
- super (dblOffset);
- _dist = dist;
- }
- /**
- * Generate the Function Metrics for the specified Variate Sequence and its corresponding Weight
- *
- * @param adblVariateSequence The specified Variate Sequence
- * @param adblVariateWeight The specified Variate Weight
- *
- * @return The Function Sequence Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics sequenceMetrics (
- final double[] adblVariateSequence,
- final double[] adblVariateWeight)
- {
- if (null == adblVariateSequence || null == adblVariateWeight) return null;
- int iNumVariate = adblVariateSequence.length;
- double[] adblFunctionSequence = new double[iNumVariate];
- if (0 == iNumVariate || iNumVariate != adblVariateWeight.length) return null;
- try {
- for (int i = 0; i < iNumVariate; ++i)
- adblFunctionSequence[i] = adblVariateWeight[i] * evaluate (adblVariateSequence[i]);
- return new org.drip.sequence.metrics.SingleSequenceAgnosticMetrics (adblFunctionSequence, null);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Function Metrics for the specified Variate Sequence
- *
- * @param adblVariateSequence The specified Variate Sequence
- *
- * @return The Function Sequence Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics sequenceMetrics (
- final double[] adblVariateSequence)
- {
- if (null == adblVariateSequence) return null;
- int iNumVariate = adblVariateSequence.length;
- double[] adblVariateWeight = new double[iNumVariate];
- for (int i = 0; i < iNumVariate; ++i)
- adblVariateWeight[i] = 1.;
- return sequenceMetrics (adblVariateSequence, adblVariateWeight);
- }
- /**
- * Generate the Function Metrics using the Underlying Variate Distribution
- *
- * @return The Function Sequence Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics sequenceMetrics()
- {
- if (null == _dist) return null;
- org.drip.numerical.common.Array2D a2DHistogram = _dist.histogram();
- return null == a2DHistogram ? null : sequenceMetrics (a2DHistogram.x(), a2DHistogram.y());
- }
- /**
- * Retrieve the Underlying Distribution
- *
- * @return The Underlying Distribution
- */
- public org.drip.measure.continuous.R1Univariate underlyingDistribution()
- {
- return _dist;
- }
- }