MultivariateRandom.java
package org.drip.sequence.functional;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
* Copyright (C) 2016 Lakshmi Krishnamurthy
* Copyright (C) 2015 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
* calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
* FX, and structured products.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three main modules:
*
* - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
*
* DROP Analytics Core implements libraries for the following:
* - Fixed Income Analytics
* - Asset Backed Analytics
* - XVA Analytics
* - Exposure and Margin Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Transaction Cost Analytics
*
* DROP Numerical Core implements libraries for the following:
* - Statistical Learning Library
* - Numerical Optimizer Library
* - Machine Learning Library
* - Spline Builder Library
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>MultivariateRandom</i> contains the implementation of the objective Function dependent on Multivariate
* Random Variables.
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/functional">Functional</a></li>
* </ul>
* <br><br>
*
* @author Lakshmi Krishnamurthy
*/
public abstract class MultivariateRandom extends org.drip.function.definition.RdToR1 {
protected MultivariateRandom()
{
super (null);
}
/**
* Compute the Target Variate Function Metrics conditional on the specified Input Non-Target Variate
* Parameter Sequence Off of the Target Variate Ghost Sample Sequence
*
* @param adblNonTargetVariate The Non-Target Variate Parameters
* @param iTargetVariateIndex Target Variate Index
* @param adblTargetVariateGhostSample Target Variate Ghost Sample
*
* @return The Variate-specific Function Metrics
*/
public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ghostTargetVariateMetrics (
final double[] adblNonTargetVariate,
final int iTargetVariateIndex,
final double[] adblTargetVariateGhostSample)
{
if (!org.drip.function.definition.RdToR1.ValidateInput (adblNonTargetVariate) ||
null == adblTargetVariateGhostSample)
return null;
int iNumNonTargetVariate = adblNonTargetVariate.length;
int iNumTargetVariateSample = adblTargetVariateGhostSample.length;
if (0 > iTargetVariateIndex || iTargetVariateIndex > iNumNonTargetVariate || 0 ==
iNumTargetVariateSample)
return null;
double[] adblFunctionArgs = new double[iNumNonTargetVariate + 1];
double[] adblFunctionSequence = new double[iNumTargetVariateSample];
for (int i = 0; i < iNumNonTargetVariate; ++i) {
if (i < iTargetVariateIndex)
adblFunctionArgs[i] = adblNonTargetVariate[i];
else if (i >= iTargetVariateIndex)
adblFunctionArgs[i + 1] = adblNonTargetVariate[i];
}
try {
for (int i = 0; i < iNumTargetVariateSample; ++i) {
adblFunctionArgs[iTargetVariateIndex] = adblTargetVariateGhostSample[i];
adblFunctionSequence[i] = evaluate (adblFunctionArgs);
}
return new org.drip.sequence.metrics.SingleSequenceAgnosticMetrics (adblFunctionSequence, null);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Compute the Target Variate Function Metrics conditional on the specified Input Non-Target Variate
* Parameter Sequence Off of the Target Variate Ghost Sample Sequence
*
* @param aSSAM Array of Variate Sequence Metrics
* @param aiNonTargetVariateSequenceIndex Array of Non-Target Variate Sequence Indexes
* @param iTargetVariateIndex Target Variate Index
* @param adblTargetVariateGhostSample Target Variate Ghost Sample
*
* @return The Variate-specific Function Metrics
*/
public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ghostTargetVariateMetrics (
final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM,
final int[] aiNonTargetVariateSequenceIndex,
final int iTargetVariateIndex,
final double[] adblTargetVariateGhostSample)
{
if (null == aSSAM || null == aiNonTargetVariateSequenceIndex || 0 > iTargetVariateIndex) return null;
int iNumNonTargetVariate = aSSAM.length - 1;
double[] adblNonTargetVariate = new double[iNumNonTargetVariate];
if (0 >= iNumNonTargetVariate || iNumNonTargetVariate != aiNonTargetVariateSequenceIndex.length ||
iTargetVariateIndex > iNumNonTargetVariate)
return null;
for (int i = 0; i < iNumNonTargetVariate; ++i)
adblNonTargetVariate[i] = aSSAM[i < iTargetVariateIndex ? i : i +
1].sequence()[aiNonTargetVariateSequenceIndex[i]];
return ghostTargetVariateMetrics (adblNonTargetVariate, iTargetVariateIndex,
adblTargetVariateGhostSample);
}
/**
* Compute the Target Variate Function Metrics over the full Non-target Variate Empirical Distribution
* Off of the Target Variate Ghost Sample Sequence
*
* @param aSSAM Array of Variate Sequence Metrics
* @param iTargetVariateIndex Target Variate Index
* @param adblTargetVariateGhostSample Target Variate Ghost Sample
*
* @return The Variate-specific Function Metrics
*/
public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ghostTargetVariateMetrics (
final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM,
final int iTargetVariateIndex,
final double[] adblTargetVariateGhostSample)
{
if (null == aSSAM || 0 > iTargetVariateIndex) return null;
int iTargetVariateVarianceIndex = 0;
int iNumNonTargetVariate = aSSAM.length - 1;
if (0 >= iNumNonTargetVariate) return null;
org.drip.spaces.iterator.SequenceIndexIterator sii =
org.drip.spaces.iterator.SequenceIndexIterator.Standard (iNumNonTargetVariate,
aSSAM[0].sequence().length);
if (null == sii) return null;
double[] adblTargetVariateVariance = new double[sii.size()];
int[] aiNonTargetVariateSequenceIndex = sii.first();
while (null != aiNonTargetVariateSequenceIndex && aiNonTargetVariateSequenceIndex.length ==
iNumNonTargetVariate) {
org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ssamGhostConditional =
ghostTargetVariateMetrics (aSSAM, aiNonTargetVariateSequenceIndex, iTargetVariateIndex,
adblTargetVariateGhostSample);
if (null == ssamGhostConditional) return null;
adblTargetVariateVariance[iTargetVariateVarianceIndex++] =
ssamGhostConditional.empiricalVariance();
aiNonTargetVariateSequenceIndex = sii.next();
}
try {
return new org.drip.sequence.metrics.SingleSequenceAgnosticMetrics (adblTargetVariateVariance,
null);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
/**
* Compute the Target Variate Function Metrics Conditional on the specified Input Non-Target Variate
* Parameter Sequence
*
* @param adblNonTargetVariate The Non-Target Variate Parameters
* @param iTargetVariateIndex Target Variate Index
* @param ssamTarget Target Variate Metrics
*
* @return The Variate-specific Function Metrics
*/
public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics conditionalTargetVariateMetrics (
final double[] adblNonTargetVariate,
final int iTargetVariateIndex,
final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ssamTarget)
{
return null == ssamTarget ? null : ghostTargetVariateMetrics (adblNonTargetVariate,
iTargetVariateIndex, ssamTarget.sequence());
}
/**
* Compute the Target Variate Function Metrics Conditional on the specified Input Non-target Variate
* Parameter Sequence
*
* @param aSSAM Array of Variate Sequence Metrics
* @param aiNonTargetVariateSequenceIndex Array of Non-Target Variate Sequence Indexes
* @param iTargetVariateIndex Target Variate Index
*
* @return The Variate-specific Function Metrics
*/
public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics conditionalTargetVariateMetrics (
final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM,
final int[] aiNonTargetVariateSequenceIndex,
final int iTargetVariateIndex)
{
if (null == aSSAM || null == aiNonTargetVariateSequenceIndex || 0 > iTargetVariateIndex) return null;
int iNumNonTargetVariate = aSSAM.length - 1;
double[] adblNonTargetVariate = new double[iNumNonTargetVariate];
if (0 >= iNumNonTargetVariate || iNumNonTargetVariate != aiNonTargetVariateSequenceIndex.length ||
iTargetVariateIndex > iNumNonTargetVariate)
return null;
for (int i = 0; i < iNumNonTargetVariate; ++i)
adblNonTargetVariate[i] = aSSAM[i < iTargetVariateIndex ? i : i +
1].sequence()[aiNonTargetVariateSequenceIndex[i]];
return conditionalTargetVariateMetrics (adblNonTargetVariate, iTargetVariateIndex,
aSSAM[iTargetVariateIndex]);
}
/**
* Compute the Target Variate Function Metrics over the full Non-target Variate Empirical Distribution
*
* @param aSSAM Array of Variate Sequence Metrics
* @param iTargetVariateIndex Target Variate Index
*
* @return The Variate-specific Function Metrics
*/
public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics unconditionalTargetVariateMetrics (
final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM,
final int iTargetVariateIndex)
{
if (null == aSSAM || 0 > iTargetVariateIndex) return null;
int iTargetVariateVarianceIndex = 0;
int iNumNonTargetVariate = aSSAM.length - 1;
if (0 >= iNumNonTargetVariate) return null;
org.drip.spaces.iterator.SequenceIndexIterator sii =
org.drip.spaces.iterator.SequenceIndexIterator.Standard (iNumNonTargetVariate,
aSSAM[0].sequence().length);
if (null == sii) return null;
double[] adblTargetVariateVariance = new double[sii.size()];
int[] aiNonTargetVariateSequenceIndex = sii.first();
while (null != aiNonTargetVariateSequenceIndex && aiNonTargetVariateSequenceIndex.length ==
iNumNonTargetVariate) {
org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ssamConditional =
conditionalTargetVariateMetrics (aSSAM, aiNonTargetVariateSequenceIndex,
iTargetVariateIndex);
if (null == ssamConditional) return null;
adblTargetVariateVariance[iTargetVariateVarianceIndex++] = ssamConditional.empiricalVariance();
aiNonTargetVariateSequenceIndex = sii.next();
}
try {
return new org.drip.sequence.metrics.SingleSequenceAgnosticMetrics (adblTargetVariateVariance,
null);
} catch (java.lang.Exception e) {
e.printStackTrace();
}
return null;
}
}