MultivariateRandom.java
- package org.drip.sequence.functional;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
- * calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
- * FX, and structured products.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three main modules:
- *
- * - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
- *
- * DROP Analytics Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Asset Backed Analytics
- * - XVA Analytics
- * - Exposure and Margin Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Transaction Cost Analytics
- *
- * DROP Numerical Core implements libraries for the following:
- * - Statistical Learning Library
- * - Numerical Optimizer Library
- * - Machine Learning Library
- * - Spline Builder Library
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>MultivariateRandom</i> contains the implementation of the objective Function dependent on Multivariate
- * Random Variables.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/functional">Functional</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public abstract class MultivariateRandom extends org.drip.function.definition.RdToR1 {
- protected MultivariateRandom()
- {
- super (null);
- }
- /**
- * Compute the Target Variate Function Metrics conditional on the specified Input Non-Target Variate
- * Parameter Sequence Off of the Target Variate Ghost Sample Sequence
- *
- * @param adblNonTargetVariate The Non-Target Variate Parameters
- * @param iTargetVariateIndex Target Variate Index
- * @param adblTargetVariateGhostSample Target Variate Ghost Sample
- *
- * @return The Variate-specific Function Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ghostTargetVariateMetrics (
- final double[] adblNonTargetVariate,
- final int iTargetVariateIndex,
- final double[] adblTargetVariateGhostSample)
- {
- if (!org.drip.function.definition.RdToR1.ValidateInput (adblNonTargetVariate) ||
- null == adblTargetVariateGhostSample)
- return null;
- int iNumNonTargetVariate = adblNonTargetVariate.length;
- int iNumTargetVariateSample = adblTargetVariateGhostSample.length;
- if (0 > iTargetVariateIndex || iTargetVariateIndex > iNumNonTargetVariate || 0 ==
- iNumTargetVariateSample)
- return null;
- double[] adblFunctionArgs = new double[iNumNonTargetVariate + 1];
- double[] adblFunctionSequence = new double[iNumTargetVariateSample];
- for (int i = 0; i < iNumNonTargetVariate; ++i) {
- if (i < iTargetVariateIndex)
- adblFunctionArgs[i] = adblNonTargetVariate[i];
- else if (i >= iTargetVariateIndex)
- adblFunctionArgs[i + 1] = adblNonTargetVariate[i];
- }
- try {
- for (int i = 0; i < iNumTargetVariateSample; ++i) {
- adblFunctionArgs[iTargetVariateIndex] = adblTargetVariateGhostSample[i];
- adblFunctionSequence[i] = evaluate (adblFunctionArgs);
- }
- return new org.drip.sequence.metrics.SingleSequenceAgnosticMetrics (adblFunctionSequence, null);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Target Variate Function Metrics conditional on the specified Input Non-Target Variate
- * Parameter Sequence Off of the Target Variate Ghost Sample Sequence
- *
- * @param aSSAM Array of Variate Sequence Metrics
- * @param aiNonTargetVariateSequenceIndex Array of Non-Target Variate Sequence Indexes
- * @param iTargetVariateIndex Target Variate Index
- * @param adblTargetVariateGhostSample Target Variate Ghost Sample
- *
- * @return The Variate-specific Function Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ghostTargetVariateMetrics (
- final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM,
- final int[] aiNonTargetVariateSequenceIndex,
- final int iTargetVariateIndex,
- final double[] adblTargetVariateGhostSample)
- {
- if (null == aSSAM || null == aiNonTargetVariateSequenceIndex || 0 > iTargetVariateIndex) return null;
- int iNumNonTargetVariate = aSSAM.length - 1;
- double[] adblNonTargetVariate = new double[iNumNonTargetVariate];
- if (0 >= iNumNonTargetVariate || iNumNonTargetVariate != aiNonTargetVariateSequenceIndex.length ||
- iTargetVariateIndex > iNumNonTargetVariate)
- return null;
- for (int i = 0; i < iNumNonTargetVariate; ++i)
- adblNonTargetVariate[i] = aSSAM[i < iTargetVariateIndex ? i : i +
- 1].sequence()[aiNonTargetVariateSequenceIndex[i]];
- return ghostTargetVariateMetrics (adblNonTargetVariate, iTargetVariateIndex,
- adblTargetVariateGhostSample);
- }
- /**
- * Compute the Target Variate Function Metrics over the full Non-target Variate Empirical Distribution
- * Off of the Target Variate Ghost Sample Sequence
- *
- * @param aSSAM Array of Variate Sequence Metrics
- * @param iTargetVariateIndex Target Variate Index
- * @param adblTargetVariateGhostSample Target Variate Ghost Sample
- *
- * @return The Variate-specific Function Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ghostTargetVariateMetrics (
- final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM,
- final int iTargetVariateIndex,
- final double[] adblTargetVariateGhostSample)
- {
- if (null == aSSAM || 0 > iTargetVariateIndex) return null;
- int iTargetVariateVarianceIndex = 0;
- int iNumNonTargetVariate = aSSAM.length - 1;
- if (0 >= iNumNonTargetVariate) return null;
- org.drip.spaces.iterator.SequenceIndexIterator sii =
- org.drip.spaces.iterator.SequenceIndexIterator.Standard (iNumNonTargetVariate,
- aSSAM[0].sequence().length);
- if (null == sii) return null;
- double[] adblTargetVariateVariance = new double[sii.size()];
- int[] aiNonTargetVariateSequenceIndex = sii.first();
- while (null != aiNonTargetVariateSequenceIndex && aiNonTargetVariateSequenceIndex.length ==
- iNumNonTargetVariate) {
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ssamGhostConditional =
- ghostTargetVariateMetrics (aSSAM, aiNonTargetVariateSequenceIndex, iTargetVariateIndex,
- adblTargetVariateGhostSample);
- if (null == ssamGhostConditional) return null;
- adblTargetVariateVariance[iTargetVariateVarianceIndex++] =
- ssamGhostConditional.empiricalVariance();
- aiNonTargetVariateSequenceIndex = sii.next();
- }
- try {
- return new org.drip.sequence.metrics.SingleSequenceAgnosticMetrics (adblTargetVariateVariance,
- null);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Target Variate Function Metrics Conditional on the specified Input Non-Target Variate
- * Parameter Sequence
- *
- * @param adblNonTargetVariate The Non-Target Variate Parameters
- * @param iTargetVariateIndex Target Variate Index
- * @param ssamTarget Target Variate Metrics
- *
- * @return The Variate-specific Function Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics conditionalTargetVariateMetrics (
- final double[] adblNonTargetVariate,
- final int iTargetVariateIndex,
- final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ssamTarget)
- {
- return null == ssamTarget ? null : ghostTargetVariateMetrics (adblNonTargetVariate,
- iTargetVariateIndex, ssamTarget.sequence());
- }
- /**
- * Compute the Target Variate Function Metrics Conditional on the specified Input Non-target Variate
- * Parameter Sequence
- *
- * @param aSSAM Array of Variate Sequence Metrics
- * @param aiNonTargetVariateSequenceIndex Array of Non-Target Variate Sequence Indexes
- * @param iTargetVariateIndex Target Variate Index
- *
- * @return The Variate-specific Function Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics conditionalTargetVariateMetrics (
- final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM,
- final int[] aiNonTargetVariateSequenceIndex,
- final int iTargetVariateIndex)
- {
- if (null == aSSAM || null == aiNonTargetVariateSequenceIndex || 0 > iTargetVariateIndex) return null;
- int iNumNonTargetVariate = aSSAM.length - 1;
- double[] adblNonTargetVariate = new double[iNumNonTargetVariate];
- if (0 >= iNumNonTargetVariate || iNumNonTargetVariate != aiNonTargetVariateSequenceIndex.length ||
- iTargetVariateIndex > iNumNonTargetVariate)
- return null;
- for (int i = 0; i < iNumNonTargetVariate; ++i)
- adblNonTargetVariate[i] = aSSAM[i < iTargetVariateIndex ? i : i +
- 1].sequence()[aiNonTargetVariateSequenceIndex[i]];
- return conditionalTargetVariateMetrics (adblNonTargetVariate, iTargetVariateIndex,
- aSSAM[iTargetVariateIndex]);
- }
- /**
- * Compute the Target Variate Function Metrics over the full Non-target Variate Empirical Distribution
- *
- * @param aSSAM Array of Variate Sequence Metrics
- * @param iTargetVariateIndex Target Variate Index
- *
- * @return The Variate-specific Function Metrics
- */
- public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics unconditionalTargetVariateMetrics (
- final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM,
- final int iTargetVariateIndex)
- {
- if (null == aSSAM || 0 > iTargetVariateIndex) return null;
- int iTargetVariateVarianceIndex = 0;
- int iNumNonTargetVariate = aSSAM.length - 1;
- if (0 >= iNumNonTargetVariate) return null;
- org.drip.spaces.iterator.SequenceIndexIterator sii =
- org.drip.spaces.iterator.SequenceIndexIterator.Standard (iNumNonTargetVariate,
- aSSAM[0].sequence().length);
- if (null == sii) return null;
- double[] adblTargetVariateVariance = new double[sii.size()];
- int[] aiNonTargetVariateSequenceIndex = sii.first();
- while (null != aiNonTargetVariateSequenceIndex && aiNonTargetVariateSequenceIndex.length ==
- iNumNonTargetVariate) {
- org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ssamConditional =
- conditionalTargetVariateMetrics (aSSAM, aiNonTargetVariateSequenceIndex,
- iTargetVariateIndex);
- if (null == ssamConditional) return null;
- adblTargetVariateVariance[iTargetVariateVarianceIndex++] = ssamConditional.empiricalVariance();
- aiNonTargetVariateSequenceIndex = sii.next();
- }
- try {
- return new org.drip.sequence.metrics.SingleSequenceAgnosticMetrics (adblTargetVariateVariance,
- null);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- }