MultivariateRandom.java

  1. package org.drip.sequence.functional;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  11.  *
  12.  *  This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
  13.  *      calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
  14.  *      FX, and structured products.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three main modules:
  19.  *  
  20.  *  - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
  23.  *
  24.  *  DROP Analytics Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Asset Backed Analytics
  27.  *  - XVA Analytics
  28.  *  - Exposure and Margin Analytics
  29.  *
  30.  *  DROP Portfolio Core implements libraries for the following:
  31.  *  - Asset Allocation Analytics
  32.  *  - Transaction Cost Analytics
  33.  *
  34.  *  DROP Numerical Core implements libraries for the following:
  35.  *  - Statistical Learning Library
  36.  *  - Numerical Optimizer Library
  37.  *  - Machine Learning Library
  38.  *  - Spline Builder Library
  39.  *
  40.  *  Documentation for DROP is Spread Over:
  41.  *
  42.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  43.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  44.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  45.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  46.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  47.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  48.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  49.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  50.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  51.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  52.  *
  53.  *  Licensed under the Apache License, Version 2.0 (the "License");
  54.  *      you may not use this file except in compliance with the License.
  55.  *  
  56.  *  You may obtain a copy of the License at
  57.  *      http://www.apache.org/licenses/LICENSE-2.0
  58.  *  
  59.  *  Unless required by applicable law or agreed to in writing, software
  60.  *      distributed under the License is distributed on an "AS IS" BASIS,
  61.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  62.  *  
  63.  *  See the License for the specific language governing permissions and
  64.  *      limitations under the License.
  65.  */

  66. /**
  67.  * <i>MultivariateRandom</i> contains the implementation of the objective Function dependent on Multivariate
  68.  * Random Variables.
  69.  *
  70.  * <br><br>
  71.  *  <ul>
  72.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
  73.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
  74.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
  75.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/functional">Functional</a></li>
  76.  *  </ul>
  77.  * <br><br>
  78.  *
  79.  * @author Lakshmi Krishnamurthy
  80.  */

  81. public abstract class MultivariateRandom extends org.drip.function.definition.RdToR1 {

  82.     protected MultivariateRandom()
  83.     {
  84.         super (null);
  85.     }

  86.     /**
  87.      * Compute the Target Variate Function Metrics conditional on the specified Input Non-Target Variate
  88.      *  Parameter Sequence Off of the Target Variate Ghost Sample Sequence
  89.      *
  90.      * @param adblNonTargetVariate The Non-Target Variate Parameters
  91.      * @param iTargetVariateIndex Target Variate Index
  92.      * @param adblTargetVariateGhostSample Target Variate Ghost Sample
  93.      *
  94.      * @return The Variate-specific Function Metrics
  95.      */

  96.     public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ghostTargetVariateMetrics (
  97.         final double[] adblNonTargetVariate,
  98.         final int iTargetVariateIndex,
  99.         final double[] adblTargetVariateGhostSample)
  100.     {
  101.         if (!org.drip.function.definition.RdToR1.ValidateInput (adblNonTargetVariate) ||
  102.             null == adblTargetVariateGhostSample)
  103.             return null;

  104.         int iNumNonTargetVariate = adblNonTargetVariate.length;
  105.         int iNumTargetVariateSample = adblTargetVariateGhostSample.length;

  106.         if (0 > iTargetVariateIndex || iTargetVariateIndex > iNumNonTargetVariate || 0 ==
  107.             iNumTargetVariateSample)
  108.             return null;

  109.         double[] adblFunctionArgs = new double[iNumNonTargetVariate + 1];
  110.         double[] adblFunctionSequence = new double[iNumTargetVariateSample];

  111.         for (int i = 0; i < iNumNonTargetVariate; ++i) {
  112.             if (i < iTargetVariateIndex)
  113.                 adblFunctionArgs[i] = adblNonTargetVariate[i];
  114.             else if (i >= iTargetVariateIndex)
  115.                 adblFunctionArgs[i + 1] = adblNonTargetVariate[i];
  116.         }

  117.         try {
  118.             for (int i = 0; i < iNumTargetVariateSample; ++i) {
  119.                 adblFunctionArgs[iTargetVariateIndex] = adblTargetVariateGhostSample[i];

  120.                 adblFunctionSequence[i] = evaluate (adblFunctionArgs);
  121.             }

  122.             return new org.drip.sequence.metrics.SingleSequenceAgnosticMetrics (adblFunctionSequence, null);
  123.         } catch (java.lang.Exception e) {
  124.             e.printStackTrace();
  125.         }

  126.         return null;
  127.     }

  128.     /**
  129.      * Compute the Target Variate Function Metrics conditional on the specified Input Non-Target Variate
  130.      *  Parameter Sequence Off of the Target Variate Ghost Sample Sequence
  131.      *
  132.      * @param aSSAM Array of Variate Sequence Metrics
  133.      * @param aiNonTargetVariateSequenceIndex Array of Non-Target Variate Sequence Indexes
  134.      * @param iTargetVariateIndex Target Variate Index
  135.      * @param adblTargetVariateGhostSample Target Variate Ghost Sample
  136.      *
  137.      * @return The Variate-specific Function Metrics
  138.      */

  139.     public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ghostTargetVariateMetrics (
  140.         final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM,
  141.         final int[] aiNonTargetVariateSequenceIndex,
  142.         final int iTargetVariateIndex,
  143.         final double[] adblTargetVariateGhostSample)
  144.     {
  145.         if (null == aSSAM || null == aiNonTargetVariateSequenceIndex || 0 > iTargetVariateIndex) return null;

  146.         int iNumNonTargetVariate = aSSAM.length - 1;
  147.         double[] adblNonTargetVariate = new double[iNumNonTargetVariate];

  148.         if (0 >= iNumNonTargetVariate || iNumNonTargetVariate != aiNonTargetVariateSequenceIndex.length ||
  149.             iTargetVariateIndex > iNumNonTargetVariate)
  150.             return null;

  151.         for (int i = 0; i < iNumNonTargetVariate; ++i)
  152.             adblNonTargetVariate[i] = aSSAM[i < iTargetVariateIndex ? i : i +
  153.                 1].sequence()[aiNonTargetVariateSequenceIndex[i]];

  154.         return ghostTargetVariateMetrics (adblNonTargetVariate, iTargetVariateIndex,
  155.             adblTargetVariateGhostSample);
  156.     }

  157.     /**
  158.      * Compute the Target Variate Function Metrics over the full Non-target Variate Empirical Distribution
  159.      *  Off of the Target Variate Ghost Sample Sequence
  160.      *
  161.      * @param aSSAM Array of Variate Sequence Metrics
  162.      * @param iTargetVariateIndex Target Variate Index
  163.      * @param adblTargetVariateGhostSample Target Variate Ghost Sample
  164.      *
  165.      * @return The Variate-specific Function Metrics
  166.      */

  167.     public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ghostTargetVariateMetrics (
  168.         final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM,
  169.         final int iTargetVariateIndex,
  170.         final double[] adblTargetVariateGhostSample)
  171.     {
  172.         if (null == aSSAM || 0 > iTargetVariateIndex) return null;

  173.         int iTargetVariateVarianceIndex = 0;
  174.         int iNumNonTargetVariate = aSSAM.length - 1;

  175.         if (0 >= iNumNonTargetVariate) return null;

  176.         org.drip.spaces.iterator.SequenceIndexIterator sii =
  177.             org.drip.spaces.iterator.SequenceIndexIterator.Standard (iNumNonTargetVariate,
  178.                 aSSAM[0].sequence().length);

  179.         if (null == sii) return null;

  180.         double[] adblTargetVariateVariance = new double[sii.size()];

  181.         int[] aiNonTargetVariateSequenceIndex = sii.first();

  182.         while (null != aiNonTargetVariateSequenceIndex && aiNonTargetVariateSequenceIndex.length ==
  183.             iNumNonTargetVariate) {
  184.             org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ssamGhostConditional =
  185.                 ghostTargetVariateMetrics (aSSAM, aiNonTargetVariateSequenceIndex, iTargetVariateIndex,
  186.                     adblTargetVariateGhostSample);

  187.             if (null == ssamGhostConditional) return null;

  188.             adblTargetVariateVariance[iTargetVariateVarianceIndex++] =
  189.                 ssamGhostConditional.empiricalVariance();

  190.             aiNonTargetVariateSequenceIndex = sii.next();
  191.         }

  192.         try {
  193.             return new org.drip.sequence.metrics.SingleSequenceAgnosticMetrics (adblTargetVariateVariance,
  194.                 null);
  195.         } catch (java.lang.Exception e) {
  196.             e.printStackTrace();
  197.         }

  198.         return null;
  199.     }

  200.     /**
  201.      * Compute the Target Variate Function Metrics Conditional on the specified Input Non-Target Variate
  202.      *  Parameter Sequence
  203.      *
  204.      * @param adblNonTargetVariate The Non-Target Variate Parameters
  205.      * @param iTargetVariateIndex Target Variate Index
  206.      * @param ssamTarget Target Variate Metrics
  207.      *
  208.      * @return The Variate-specific Function Metrics
  209.      */

  210.     public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics conditionalTargetVariateMetrics (
  211.         final double[] adblNonTargetVariate,
  212.         final int iTargetVariateIndex,
  213.         final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ssamTarget)
  214.     {
  215.         return null == ssamTarget ? null : ghostTargetVariateMetrics (adblNonTargetVariate,
  216.             iTargetVariateIndex, ssamTarget.sequence());
  217.     }

  218.     /**
  219.      * Compute the Target Variate Function Metrics Conditional on the specified Input Non-target Variate
  220.      *  Parameter Sequence
  221.      *
  222.      * @param aSSAM Array of Variate Sequence Metrics
  223.      * @param aiNonTargetVariateSequenceIndex Array of Non-Target Variate Sequence Indexes
  224.      * @param iTargetVariateIndex Target Variate Index
  225.      *
  226.      * @return The Variate-specific Function Metrics
  227.      */

  228.     public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics conditionalTargetVariateMetrics (
  229.         final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM,
  230.         final int[] aiNonTargetVariateSequenceIndex,
  231.         final int iTargetVariateIndex)
  232.     {
  233.         if (null == aSSAM || null == aiNonTargetVariateSequenceIndex || 0 > iTargetVariateIndex) return null;

  234.         int iNumNonTargetVariate = aSSAM.length - 1;
  235.         double[] adblNonTargetVariate = new double[iNumNonTargetVariate];

  236.         if (0 >= iNumNonTargetVariate || iNumNonTargetVariate != aiNonTargetVariateSequenceIndex.length ||
  237.             iTargetVariateIndex > iNumNonTargetVariate)
  238.             return null;

  239.         for (int i = 0; i < iNumNonTargetVariate; ++i)
  240.             adblNonTargetVariate[i] = aSSAM[i < iTargetVariateIndex ? i : i +
  241.                 1].sequence()[aiNonTargetVariateSequenceIndex[i]];

  242.         return conditionalTargetVariateMetrics (adblNonTargetVariate, iTargetVariateIndex,
  243.             aSSAM[iTargetVariateIndex]);
  244.     }

  245.     /**
  246.      * Compute the Target Variate Function Metrics over the full Non-target Variate Empirical Distribution
  247.      *
  248.      * @param aSSAM Array of Variate Sequence Metrics
  249.      * @param iTargetVariateIndex Target Variate Index
  250.      *
  251.      * @return The Variate-specific Function Metrics
  252.      */

  253.     public org.drip.sequence.metrics.SingleSequenceAgnosticMetrics unconditionalTargetVariateMetrics (
  254.         final org.drip.sequence.metrics.SingleSequenceAgnosticMetrics[] aSSAM,
  255.         final int iTargetVariateIndex)
  256.     {
  257.         if (null == aSSAM || 0 > iTargetVariateIndex) return null;

  258.         int iTargetVariateVarianceIndex = 0;
  259.         int iNumNonTargetVariate = aSSAM.length - 1;

  260.         if (0 >= iNumNonTargetVariate) return null;

  261.         org.drip.spaces.iterator.SequenceIndexIterator sii =
  262.             org.drip.spaces.iterator.SequenceIndexIterator.Standard (iNumNonTargetVariate,
  263.                 aSSAM[0].sequence().length);

  264.         if (null == sii) return null;

  265.         double[] adblTargetVariateVariance = new double[sii.size()];

  266.         int[] aiNonTargetVariateSequenceIndex = sii.first();

  267.         while (null != aiNonTargetVariateSequenceIndex && aiNonTargetVariateSequenceIndex.length ==
  268.             iNumNonTargetVariate) {
  269.             org.drip.sequence.metrics.SingleSequenceAgnosticMetrics ssamConditional =
  270.                 conditionalTargetVariateMetrics (aSSAM, aiNonTargetVariateSequenceIndex,
  271.                     iTargetVariateIndex);

  272.             if (null == ssamConditional) return null;

  273.             adblTargetVariateVariance[iTargetVariateVarianceIndex++] = ssamConditional.empiricalVariance();

  274.             aiNonTargetVariateSequenceIndex = sii.next();
  275.         }

  276.         try {
  277.             return new org.drip.sequence.metrics.SingleSequenceAgnosticMetrics (adblTargetVariateVariance,
  278.                 null);
  279.         } catch (java.lang.Exception e) {
  280.             e.printStackTrace();
  281.         }

  282.         return null;
  283.     }
  284. }