PoissonSequenceAgnosticMetrics.java
- package org.drip.sequence.metrics;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
- * calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
- * FX, and structured products.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three main modules:
- *
- * - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
- *
- * DROP Analytics Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Asset Backed Analytics
- * - XVA Analytics
- * - Exposure and Margin Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Transaction Cost Analytics
- *
- * DROP Numerical Core implements libraries for the following:
- * - Statistical Learning Library
- * - Numerical Optimizer Library
- * - Machine Learning Library
- * - Spline Builder Library
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>PoissonSequenceAgnosticMetrics</i> contains the Sample Distribution Metrics and Agnostic Bounds related
- * to the specified Poisson Sequence.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/metrics">Metrics</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class PoissonSequenceAgnosticMetrics extends org.drip.sequence.metrics.SingleSequenceAgnosticMetrics {
- private double _dblPopulationMean = java.lang.Double.NaN;
- /**
- * PoissonSequenceAgnosticMetrics Constructor
- *
- * @param adblSequence The Random Sequence
- * @param dblPopulationMean The Mean of the Underlying Distribution
- *
- * @throws java.lang.Exception Thrown if PoissonSequenceAgnosticMetrics cannot be constructed
- */
- public PoissonSequenceAgnosticMetrics (
- final double[] adblSequence,
- final double dblPopulationMean)
- throws java.lang.Exception
- {
- super (adblSequence, null);
- _dblPopulationMean = dblPopulationMean;
- }
- /**
- * Retrieve the Mean of the Underlying Distribution
- *
- * @return The Mean of the Underlying Distribution
- */
- public double populationMean()
- {
- return _dblPopulationMean;
- }
- /**
- * Compute the Chernoff-Stirling Upper Bound
- *
- * @param dblLevel The Level at which the Bound is sought
- *
- * @return The Chernoff-Stirling Upper Bound
- *
- * @throws java.lang.Exception Thrown if the Chernoff-Stirling Upper Bound cannot be computed
- */
- public double chernoffStirlingUpperBound (
- final double dblLevel)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblLevel))
- throw new java.lang.Exception
- ("PoissonSequenceAgnosticMetrics::chernoffStirlingUpperBound => Invalid Inputs");
- int iNumEntry = sequence().length;
- double dblPopulationMean = org.drip.numerical.common.NumberUtil.IsValid (_dblPopulationMean) ?
- _dblPopulationMean : empiricalExpectation();
- double dblBound = (java.lang.Math.pow (dblPopulationMean / dblLevel, iNumEntry * dblLevel) *
- java.lang.Math.exp (iNumEntry * (dblLevel - dblPopulationMean) - (1. / (12. * iNumEntry *
- dblLevel + 1.)))) / java.lang.Math.sqrt (2. * java.lang.Math.PI * iNumEntry * dblLevel);
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblBound)) return 0.;
- return dblBound > 1. ? 1. : dblBound;
- }
- }