SingleSequenceAgnosticMetrics.java
- package org.drip.sequence.metrics;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
- * calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
- * FX, and structured products.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three main modules:
- *
- * - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
- *
- * DROP Analytics Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Asset Backed Analytics
- * - XVA Analytics
- * - Exposure and Margin Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Transaction Cost Analytics
- *
- * DROP Numerical Core implements libraries for the following:
- * - Statistical Learning Library
- * - Numerical Optimizer Library
- * - Machine Learning Library
- * - Spline Builder Library
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>SingleSequenceAgnosticMetrics</i> contains the Sample Distribution Metrics and Agnostic Bounds related
- * to the specified Sequence.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/metrics">Metrics</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class SingleSequenceAgnosticMetrics {
- private boolean _bIsPositive = true;
- private double[] _adblSequence = null;
- private double _dblEmpiricalVariance = java.lang.Double.NaN;
- private double _dblEmpiricalExpectation = java.lang.Double.NaN;
- private org.drip.measure.continuous.R1Univariate _distPopulation = null;
- /**
- * Build out the Sequence and their Metrics
- *
- * @param adblSequence Array of Sequence Entries
- * @param distPopulation The True Underlying Generator Distribution of the Population
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public SingleSequenceAgnosticMetrics (
- final double[] adblSequence,
- final org.drip.measure.continuous.R1Univariate distPopulation)
- throws java.lang.Exception
- {
- if (null == (_adblSequence = adblSequence))
- throw new java.lang.Exception ("SingleSequenceAgnosticMetrics ctr: Invalid Inputs");
- _dblEmpiricalExpectation = 0.;
- _distPopulation = distPopulation;
- int iNumEntry = _adblSequence.length;
- if (0 == iNumEntry)
- throw new java.lang.Exception ("SingleSequenceAgnosticMetrics ctr: Invalid Inputs");
- for (int i = 0; i < iNumEntry; ++i) {
- if (!org.drip.numerical.common.NumberUtil.IsValid (_adblSequence[i]))
- throw new java.lang.Exception ("SingleSequenceAgnosticMetrics ctr: Invalid Inputs");
- _dblEmpiricalExpectation += _adblSequence[i];
- if (_adblSequence[i] < 0.) _bIsPositive = false;
- }
- _dblEmpiricalVariance = 0.;
- _dblEmpiricalExpectation /= iNumEntry;
- for (int i = 0; i < iNumEntry; ++i)
- _dblEmpiricalVariance += (_adblSequence[i] - _dblEmpiricalExpectation) * (_adblSequence[i] -
- _dblEmpiricalExpectation);
- _dblEmpiricalVariance /= iNumEntry;
- }
- /**
- * Compute the Specified Central Moment of the Sample Sequence
- *
- * @param iMoment The Moment
- * @param bAbsolute TRUE - The Moment sought is on the Absolute Value
- *
- * @return The Specified Central Moment of the Sample Sequence
- *
- * @throws java.lang.Exception Thrown if the Inputs are invalid
- */
- public double empiricalCentralMoment (
- final int iMoment,
- final boolean bAbsolute)
- throws java.lang.Exception
- {
- if (0 >= iMoment)
- throw new java.lang.Exception
- ("SingleSequenceAgnosticMetrics::empiricalCentralMoment => Invalid Moment");
- double dblMoment = 0.;
- int iNumEntry = _adblSequence.length;
- for (int i = 0; i < iNumEntry; ++i) {
- double dblDeparture = _adblSequence[i] - _dblEmpiricalExpectation;
- dblMoment += java.lang.Math.pow (bAbsolute ? java.lang.Math.abs (dblDeparture) : dblDeparture,
- iMoment);
- }
- return dblMoment / iNumEntry;
- }
- /**
- * Compute the Specified Raw Moment of the Sample Sequence
- *
- * @param iMoment The Moment
- * @param bAbsolute TRUE - The Moment sought is on the Absolute Value
- *
- * @return The Specified Raw Moment of the Sample Sequence
- *
- * @throws java.lang.Exception Thrown if the Inputs are invalid
- */
- public double empiricalRawMoment (
- final int iMoment,
- final boolean bAbsolute)
- throws java.lang.Exception
- {
- if (0 >= iMoment)
- throw new java.lang.Exception
- ("SingleSequenceAgnosticMetrics::empiricalRawMoment => Invalid Moment");
- double dblMoment = 0.;
- int iNumEntry = _adblSequence.length;
- for (int i = 0; i < iNumEntry; ++i)
- dblMoment += java.lang.Math.pow (bAbsolute ? java.lang.Math.abs (_adblSequence[i]) :
- _adblSequence[i], iMoment);
- return dblMoment / iNumEntry;
- }
- /**
- * Compute the Specified Anchor Moment of the Sample Sequence
- *
- * @param iMoment The Moment
- * @param dblAnchor The Anchor Pivot off of which the Moment is calculated
- * @param bAbsolute TRUE - The Moment sought is on the Absolute Value
- *
- * @return The Specified Anchor Moment of the Sample Sequence
- *
- * @throws java.lang.Exception Thrown if the Inputs are invalid
- */
- public double empiricalAnchorMoment (
- final int iMoment,
- final double dblAnchor,
- final boolean bAbsolute)
- throws java.lang.Exception
- {
- if (0 >= iMoment || !org.drip.numerical.common.NumberUtil.IsValid (dblAnchor))
- throw new java.lang.Exception
- ("SingleSequenceAgnosticMetrics::empiricalAnchorMoment => Invalid Inputs");
- double dblMoment = 0.;
- int iNumEntry = _adblSequence.length;
- for (int i = 0; i < iNumEntry; ++i) {
- double dblPivotShift = _adblSequence[i] - dblAnchor;
- dblMoment += java.lang.Math.pow (bAbsolute ? java.lang.Math.abs (dblPivotShift) : dblPivotShift,
- iMoment);
- }
- return dblMoment / iNumEntry;
- }
- /**
- * Generate the Metrics for the Univariate Function Sequence
- *
- * @param au The Univariate Function
- *
- * @return Metrics for the Univariate Function Sequence
- */
- public SingleSequenceAgnosticMetrics functionSequenceMetrics (
- final org.drip.function.definition.R1ToR1 au)
- {
- if (null == au) return null;
- int iNumEntry = _adblSequence.length;
- double[] adblFunctionMetrics = new double[iNumEntry];
- try {
- for (int i = 0; i < iNumEntry; ++i)
- adblFunctionMetrics[i] = au.evaluate (_adblSequence[i]);
- return new SingleSequenceAgnosticMetrics (adblFunctionMetrics, null);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Retrieve the Population Distribution
- *
- * @return The Population Distribution
- */
- public org.drip.measure.continuous.R1Univariate populationDistribution()
- {
- return _distPopulation;
- }
- /**
- * Retrieve the Sample Expectation
- *
- * @return The Sample Expectation
- */
- public double empiricalExpectation()
- {
- return _dblEmpiricalExpectation;
- }
- /**
- * Retrieve the Population Mean
- *
- * @return The Population Mean
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double populationMean()
- throws java.lang.Exception
- {
- return null == _distPopulation ? java.lang.Double.NaN : _distPopulation.mean();
- }
- /**
- * Retrieve the Sample Variance
- *
- * @return The Sample Variance
- */
- public double empiricalVariance()
- {
- return _dblEmpiricalVariance;
- }
- /**
- * Retrieve the Population Variance
- *
- * @return The Population Variance
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public double populationVariance()
- throws java.lang.Exception
- {
- return null == _distPopulation ? java.lang.Double.NaN : _distPopulation.variance();
- }
- /**
- * Retrieve the Sequence Positiveness Flag
- *
- * @return TRUE - The Sequence is Positiveness
- */
- public boolean isPositive()
- {
- return _bIsPositive;
- }
- /**
- * Retrieve the Input Sequence
- *
- * @return The Input Sequence
- */
- public double[] sequence()
- {
- return _adblSequence;
- }
- /**
- * Retrieve the Markov Upper Limiting Probability Bound for the Specified Level:
- * - P (X gte t) lte E[f(X)] / f(t)
- *
- * @param dblLevel The Specified Level
- * @param auNonDecreasing The Non-decreasing Bounding Transformer Function
- *
- * @return The Markov Upper Limiting Probability Bound for the Specified Level
- *
- * @throws java.lang.Exception Thrown if the Inputs are invalid
- */
- public double markovUpperProbabilityBound (
- final double dblLevel,
- final org.drip.function.definition.R1ToR1 auNonDecreasing)
- throws java.lang.Exception
- {
- if (!isPositive() || !org.drip.numerical.common.NumberUtil.IsValid (dblLevel) || dblLevel <= 0.)
- throw new java.lang.Exception
- ("SingleSequenceAgnosticMetrics::markovUpperProbabilityBound => Invalid Inputs");
- double dblPopulationMean = populationMean();
- double dblUpperProbabilityBound = (org.drip.numerical.common.NumberUtil.IsValid (dblPopulationMean) ?
- dblPopulationMean : _dblEmpiricalExpectation) / dblLevel;
- if (null != auNonDecreasing) {
- SingleSequenceAgnosticMetrics smFunction = functionSequenceMetrics (auNonDecreasing);
- if (null == smFunction)
- throw new java.lang.Exception
- ("SingleSequenceAgnosticMetrics::markovUpperProbabilityBound => Cannot generate Function Sequence Metrics");
- dblUpperProbabilityBound = smFunction.empiricalExpectation() / auNonDecreasing.evaluate
- (dblLevel);
- }
- return dblUpperProbabilityBound < 1. ? dblUpperProbabilityBound : 1.;
- }
- /**
- * Retrieve the Mean Departure Bounds Using the Chebyshev's Inequality
- *
- * @param dblLevel The Level at which the Departure is sought
- *
- * @return The Mean Departure Bounds Instance
- */
- public org.drip.sequence.metrics.PivotedDepartureBounds chebyshevBound (
- final double dblLevel)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblLevel) || dblLevel <= 0.) return null;
- try {
- double dblPopulationVariance = populationVariance();
- double dblMeanDepartureBound = (org.drip.numerical.common.NumberUtil.IsValid (dblPopulationVariance) ?
- dblPopulationVariance : _dblEmpiricalVariance) / (dblLevel * dblLevel);
- dblMeanDepartureBound = dblMeanDepartureBound < 1. ? dblMeanDepartureBound : 1.;
- return new org.drip.sequence.metrics.PivotedDepartureBounds
- (org.drip.sequence.metrics.PivotedDepartureBounds.PIVOT_ANCHOR_TYPE_MEAN, java.lang.Double.NaN,
- dblMeanDepartureBound, dblMeanDepartureBound);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Retrieve the Mean Departure Bounds Using the Central Moment Bounding Inequality
- *
- * @param dblLevel The Level at which the Departure is sought
- * @param iMoment The Moment Bound sought
- *
- * @return The Mean Departure Bounds Instance
- */
- public org.drip.sequence.metrics.PivotedDepartureBounds centralMomentBound (
- final double dblLevel,
- final int iMoment)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblLevel) || dblLevel <= 0.) return null;
- try {
- double dblMeanDepartureBound = empiricalCentralMoment (iMoment, true) / java.lang.Math.pow
- (dblLevel, iMoment);
- dblMeanDepartureBound = dblMeanDepartureBound < 1. ? dblMeanDepartureBound : 1.;
- return new org.drip.sequence.metrics.PivotedDepartureBounds
- (org.drip.sequence.metrics.PivotedDepartureBounds.PIVOT_ANCHOR_TYPE_MEAN, java.lang.Double.NaN,
- dblMeanDepartureBound, dblMeanDepartureBound);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Retrieve the Mean Departure Bounds Using the Chebyshev-Cantelli Inequality
- *
- * @param dblLevel The Level at which the Departure is sought
- *
- * @return The Mean Departure Bounds
- */
- public org.drip.sequence.metrics.PivotedDepartureBounds chebyshevCantelliBound (
- final double dblLevel)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblLevel) || dblLevel <= 0.) return null;
- try {
- double dblPopulationVariance = populationVariance();
- double dblVariance = (org.drip.numerical.common.NumberUtil.IsValid (dblPopulationVariance) ?
- dblPopulationVariance : _dblEmpiricalVariance);
- return new org.drip.sequence.metrics.PivotedDepartureBounds
- (org.drip.sequence.metrics.PivotedDepartureBounds.PIVOT_ANCHOR_TYPE_MEAN, java.lang.Double.NaN,
- java.lang.Double.NaN, dblVariance / (dblVariance + dblLevel * dblLevel));
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Retrieve the Chebyshev's Association Joint Expectation Bound
- *
- * @param au1 Function 1 Operating On Sequence 1
- * @param bNonDecreasing1 TRUE - Function 1 is non-decreasing
- * @param au2 Function 2 Operating On Sequence 2
- * @param bNonDecreasing2 TRUE - Function 2 is non-decreasing
- *
- * @return The Chebyshev's Association Joint Expectation Bound
- */
- public org.drip.sequence.metrics.PivotedDepartureBounds chebyshevAssociationBound (
- final org.drip.function.definition.R1ToR1 au1,
- final boolean bNonDecreasing1,
- final org.drip.function.definition.R1ToR1 au2,
- final boolean bNonDecreasing2)
- {
- if (null == au1 || null == au2) return null;
- double dblBound = functionSequenceMetrics (au1).empiricalExpectation() * functionSequenceMetrics
- (au2).empiricalExpectation();
- dblBound = dblBound < 1. ? dblBound : 1.;
- if (bNonDecreasing1 == bNonDecreasing2) {
- try {
- return new org.drip.sequence.metrics.PivotedDepartureBounds
- (org.drip.sequence.metrics.PivotedDepartureBounds.PIVOT_ANCHOR_TYPE_CUSTOM, 0.,
- dblBound, java.lang.Double.NaN);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- try {
- return new org.drip.sequence.metrics.PivotedDepartureBounds
- (org.drip.sequence.metrics.PivotedDepartureBounds.PIVOT_ANCHOR_TYPE_CUSTOM, 0.,
- java.lang.Double.NaN, dblBound);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Estimate Mean Departure Bounds of the Average using the Weak Law of Large Numbers
- *
- * @param dblLevel The Level at which the Departure is sought
- *
- * @return The Mean Departure Bounds
- */
- public org.drip.sequence.metrics.PivotedDepartureBounds weakLawAverageBounds (
- final double dblLevel)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblLevel) || dblLevel <= 0.) return null;
- try {
- double dblPopulationVariance = populationVariance();
- double dblVariance = (org.drip.numerical.common.NumberUtil.IsValid (dblPopulationVariance) ?
- dblPopulationVariance : _dblEmpiricalVariance);
- double dblBound = dblVariance / (_adblSequence.length * dblLevel * dblLevel);
- dblBound = dblBound < 1. ? dblBound : 1.;
- return new org.drip.sequence.metrics.PivotedDepartureBounds
- (org.drip.sequence.metrics.PivotedDepartureBounds.PIVOT_ANCHOR_TYPE_MEAN,
- java.lang.Double.NaN, dblBound, dblBound);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- }