UnitSequenceAgnosticMetrics.java

package org.drip.sequence.metrics;

/*
 * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 */

/*!
 * Copyright (C) 2019 Lakshmi Krishnamurthy
 * Copyright (C) 2018 Lakshmi Krishnamurthy
 * Copyright (C) 2017 Lakshmi Krishnamurthy
 * Copyright (C) 2016 Lakshmi Krishnamurthy
 * Copyright (C) 2015 Lakshmi Krishnamurthy
 * 
 *  This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
 *  	calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
 *  	FX, and structured products.
 *  
 *  	https://lakshmidrip.github.io/DROP/
 *  
 *  DROP is composed of three main modules:
 *  
 *  - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
 *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
 *  - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
 * 
 * 	DROP Analytics Core implements libraries for the following:
 * 	- Fixed Income Analytics
 * 	- Asset Backed Analytics
 * 	- XVA Analytics
 * 	- Exposure and Margin Analytics
 * 
 * 	DROP Portfolio Core implements libraries for the following:
 * 	- Asset Allocation Analytics
 * 	- Transaction Cost Analytics
 * 
 * 	DROP Numerical Core implements libraries for the following:
 * 	- Statistical Learning Library
 * 	- Numerical Optimizer Library
 * 	- Machine Learning Library
 * 	- Spline Builder Library
 * 
 * 	Documentation for DROP is Spread Over:
 * 
 * 	- Main                     => https://lakshmidrip.github.io/DROP/
 * 	- Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
 * 	- GitHub                   => https://github.com/lakshmiDRIP/DROP
 * 	- Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
 * 	- Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
 * 	- Release Versions         => https://lakshmidrip.github.io/DROP/version.html
 * 	- Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
 * 	- Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
 * 	- JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
 * 	- Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *   	you may not use this file except in compliance with the License.
 *   
 *  You may obtain a copy of the License at
 *  	http://www.apache.org/licenses/LICENSE-2.0
 *  
 *  Unless required by applicable law or agreed to in writing, software
 *  	distributed under the License is distributed on an "AS IS" BASIS,
 *  	WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  
 *  See the License for the specific language governing permissions and
 *  	limitations under the License.
 */

/**
 * <i>UnitSequenceAgnosticMetrics</i> contains the Sample Distribution Metrics and Agnostic Bounds related to
 * the specified Bounded [0, 1] Sequence.
 * 
 * <br><br>
 *  <ul>
 *		<li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
 *		<li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
 *		<li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
 *		<li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/metrics">Metrics</a></li>
 *  </ul>
 * <br><br>
 *
 * @author Lakshmi Krishnamurthy
 */

public class UnitSequenceAgnosticMetrics extends org.drip.sequence.metrics.BoundedSequenceAgnosticMetrics
{
	private double _dblPopulationMean = java.lang.Double.NaN;

	/**
	 * UnitSequenceAgnosticMetrics Constructor
	 * 
	 * @param adblSequence The Random Sequence
	 * @param dblPopulationMean The Mean of the Underlying Distribution
	 * 
	 * @throws java.lang.Exception Thrown if UnitSequenceAgnosticMetrics cannot be constructed
	 */

	public UnitSequenceAgnosticMetrics (
		final double[] adblSequence,
		final double dblPopulationMean)
		throws java.lang.Exception
	{
		super (adblSequence, null, 1.);

		_dblPopulationMean = dblPopulationMean;
	}

	/**
	 * Retrieve the Mean of the Underlying Distribution
	 * 
	 * @return The Mean of the Underlying Distribution
	 */

	public double populationMean()
	{
		return _dblPopulationMean;
	}

	/**
	 * Compute the Chernoff Binomial Upper Bound
	 * 
	 * @param dblLevel The Level at which the Bound is sought
	 * 
	 * @return The Chernoff Binomial Upper Bound
	 * 
	 * @throws java.lang.Exception Thrown if the Chernoff Binomial Upper Bound cannot be computed
	 */

	public double chernoffBinomialUpperBound (
		final double dblLevel)
		throws java.lang.Exception
	{
		if (!org.drip.numerical.common.NumberUtil.IsValid (dblLevel) || 1. < dblLevel)
			throw new java.lang.Exception
				("UnitSequenceAgnosticMetrics::chernoffBinomialUpperBound => Invalid Inputs");

		int iNumEntry = sequence().length;

		double dblPopulationMean = org.drip.numerical.common.NumberUtil.IsValid (_dblPopulationMean) ?
			_dblPopulationMean : empiricalExpectation();

		double dblBound = java.lang.Math.pow (dblPopulationMean / dblLevel, iNumEntry * dblLevel) *
			java.lang.Math.pow ((1. - dblPopulationMean) / (1. - dblLevel), iNumEntry * (1. - dblLevel));

		if (!org.drip.numerical.common.NumberUtil.IsValid (dblBound)) return 0.;

		return dblBound > 1. ? 1. : dblBound;
	}

	/**
	 * Compute the Chernoff-Poisson Binomial Upper Bound
	 * 
	 * @param dblLevel The Level at which the Bound is sought
	 * 
	 * @return The Chernoff-Poisson Binomial Upper Bound
	 * 
	 * @throws java.lang.Exception Thrown if the Chernoff-Poisson Binomial Upper Bound cannot be computed
	 */

	public double chernoffPoissonUpperBound (
		final double dblLevel)
		throws java.lang.Exception
	{
		if (!org.drip.numerical.common.NumberUtil.IsValid (dblLevel) || 1. < dblLevel)
			throw new java.lang.Exception
				("UnitSequenceAgnosticMetrics::ChernoffBinomialUpperBound => Invalid Inputs");

		int iNumEntry = sequence().length;

		double dblPopulationMean = org.drip.numerical.common.NumberUtil.IsValid (_dblPopulationMean) ?
			_dblPopulationMean : empiricalExpectation();

		double dblBound = java.lang.Math.pow (dblPopulationMean / dblLevel, iNumEntry * dblLevel) *
			java.lang.Math.exp (iNumEntry * (dblLevel - dblPopulationMean));

		if (!org.drip.numerical.common.NumberUtil.IsValid (dblBound)) return 0.;

		return dblBound > 1. ? 1. : dblBound;
	}

	/**
	 * Compute the Karp/Hagerup/Rub Pivot Departure Bounds outlined below:
	 * 
	 * 	- Karp, R. M. (1988): Probabilistic Analysis of Algorithms, University of California, Berkeley.
	 * 	- Hagerup, T., and C. Rub (1990): A Guided Tour of Chernoff Bounds, Information Processing Letters,
	 * 		33:305-308.
	 * 
	 * @param dblLevel The Level at which the Bound is sought
	 * 
	 * @return The Karp/Hagerup/Rub Pivot Departure Bounds
	 */

	public org.drip.sequence.metrics.PivotedDepartureBounds karpHagerupRubBounds (
		final double dblLevel)
	{
		if (!org.drip.numerical.common.NumberUtil.IsValid (dblLevel) || 1. < dblLevel) return null;

		int iNumEntry = sequence().length;

		double dblPopulationMean = org.drip.numerical.common.NumberUtil.IsValid (_dblPopulationMean) ?
			_dblPopulationMean : empiricalExpectation();

		double dblScaledLevel = dblLevel / dblPopulationMean;

		double dblLowerBound = java.lang.Math.exp (-0.5 * dblPopulationMean * iNumEntry * dblScaledLevel *
			dblScaledLevel);

		if (!org.drip.numerical.common.NumberUtil.IsValid (dblLowerBound)) dblLowerBound = 0.;

		double dblUpperBound = java.lang.Math.exp (-1. * dblPopulationMean * iNumEntry * (1. +
			dblScaledLevel) * java.lang.Math.log (1. + dblScaledLevel) - dblScaledLevel);

		if (!org.drip.numerical.common.NumberUtil.IsValid (dblUpperBound)) dblUpperBound = 0.;

		try {
			return new org.drip.sequence.metrics.PivotedDepartureBounds
				(org.drip.sequence.metrics.PivotedDepartureBounds.PIVOT_ANCHOR_TYPE_MEAN,
					java.lang.Double.NaN, dblLowerBound > 1. ? 1. : dblLowerBound, dblUpperBound > 1. ? 1. :
						dblUpperBound);
		} catch (java.lang.Exception e) {
			e.printStackTrace();
		}

		return null;
	}
}