MultivariateSequenceGenerator.java
- package org.drip.sequence.random;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
- * calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
- * FX, and structured products.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three main modules:
- *
- * - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
- *
- * DROP Analytics Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Asset Backed Analytics
- * - XVA Analytics
- * - Exposure and Margin Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Transaction Cost Analytics
- *
- * DROP Numerical Core implements libraries for the following:
- * - Statistical Learning Library
- * - Numerical Optimizer Library
- * - Machine Learning Library
- * - Spline Builder Library
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>MultivariateSequenceGenerator</i> implements the Multivariate Random Sequence Generator Functionality.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/random">Random</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class MultivariateSequenceGenerator {
- private double[][] _aadblCholesky = null;
- private double[][] _aadblCorrelation = null;
- private org.drip.sequence.random.UnivariateSequenceGenerator[] _aUSG = null;
- /**
- * MultivariateSequenceGenerator Constructor
- *
- * @param aUSG Array of Univariate Sequence Generators
- * @param aadblCorrelation The Correlation Matrix
- *
- * @throws java.lang.Exception Thrown if the Inputs are invalid
- */
- public MultivariateSequenceGenerator (
- final org.drip.sequence.random.UnivariateSequenceGenerator[] aUSG,
- final double[][] aadblCorrelation)
- throws java.lang.Exception
- {
- if (null == (_aUSG = aUSG) || null == (_aadblCorrelation = aadblCorrelation))
- throw new java.lang.Exception ("MultivariateSequenceGenerator ctr: Invalid Inputs");
- _aadblCholesky = org.drip.numerical.linearalgebra.Matrix.CholeskyBanachiewiczFactorization
- (aadblCorrelation);
- int iNumVariate = aUSG.length;
- if (null == _aadblCholesky || null == _aadblCholesky[0] || iNumVariate != _aadblCholesky.length ||
- iNumVariate != _aadblCholesky[0].length)
- throw new java.lang.Exception ("MultivariateSequenceGenerator ctr: Invalid Inputs");
- for (int i = 0; i < iNumVariate; ++i) {
- if (null == _aUSG[i])
- throw new java.lang.Exception ("MultivariateSequenceGenerator ctr: Invalid Inputs");
- for (int j = 0; j < iNumVariate; ++j) {
- if (!org.drip.numerical.common.NumberUtil.IsValid (_aadblCorrelation[i][j]))
- throw new java.lang.Exception ("MultivariateSequenceGenerator ctr: Invalid Inputs");
- }
- }
- }
- /**
- * Retrieve the Array of Univariate Sequence Generators
- *
- * @return Array of Univariate Sequence Generators
- */
- public org.drip.sequence.random.UnivariateSequenceGenerator[] usg()
- {
- return _aUSG;
- }
- /**
- * Retrieve the Correlation Matrix
- *
- * @return The Correlation Matrix
- */
- public double[][] correlation()
- {
- return _aadblCorrelation;
- }
- /**
- * Retrieve the Cholesky Factorial
- *
- * @return The Cholesky Factorial
- */
- public double[][] cholesky()
- {
- return _aadblCholesky;
- }
- /**
- * Retrieve the Number of Variates
- *
- * @return The Number of Variates
- */
- public int numVariate()
- {
- return _aUSG.length;
- }
- /**
- * Generate the Set of Multivariate Random Numbers according to the specified rule
- *
- * @return The Set of Multivariate Random Numbers
- */
- public double[] random()
- {
- int iNumVariate = _aUSG.length;
- double[] adblRandom = new double[iNumVariate];
- double[] adblUncorrelatedRandom = new double[iNumVariate];
- for (int i = 0; i < iNumVariate; ++i)
- adblUncorrelatedRandom[i] = _aUSG[i].random();
- for (int i = 0; i < iNumVariate; ++i) {
- adblRandom[i] = 0.;
- for (int j = 0; j < iNumVariate; ++j)
- adblRandom[i] += _aadblCholesky[i][j] * adblUncorrelatedRandom[j];
- }
- return adblRandom;
- }
- }