PrincipalFactorSequenceGenerator.java
- package org.drip.sequence.random;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting risk, transaction costs, exposure, margin
- * calculations, and portfolio construction within and across fixed income, credit, commodity, equity,
- * FX, and structured products.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three main modules:
- *
- * - DROP Analytics Core - https://lakshmidrip.github.io/DROP-Analytics-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Numerical Core - https://lakshmidrip.github.io/DROP-Numerical-Core/
- *
- * DROP Analytics Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Asset Backed Analytics
- * - XVA Analytics
- * - Exposure and Margin Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Transaction Cost Analytics
- *
- * DROP Numerical Core implements libraries for the following:
- * - Statistical Learning Library
- * - Numerical Optimizer Library
- * - Machine Learning Library
- * - Spline Builder Library
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>PrincipalFactorSequenceGenerator</i> implements the Principal Factors Based Multivariate Random
- * Sequence Generator Functionality.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/NumericalCore.md">Numerical Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence">Sequence</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/sequence/random">Random</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class PrincipalFactorSequenceGenerator extends org.drip.sequence.random.MultivariateSequenceGenerator
- {
- private double[][] _aadblFactor = null;
- private double[] _adblFactorWeight = null;
- /**
- * PrincipalFactorSequenceGenerator Constructor
- *
- * @param aUSG Array of Univariate Sequence Generators
- * @param aadblCorrelation The Correlation Matrix
- * @param iNumFactor Number of Factors
- *
- * @throws java.lang.Exception Thrown if the Inputs are invalid
- */
- public PrincipalFactorSequenceGenerator (
- final org.drip.sequence.random.UnivariateSequenceGenerator[] aUSG,
- final double[][] aadblCorrelation,
- final int iNumFactor)
- throws java.lang.Exception
- {
- super (aUSG, aadblCorrelation);
- int iNumVariate = aUSG.length;
- if (0 >= iNumFactor || iNumFactor > iNumVariate)
- throw new java.lang.Exception ("PrincipalFactorSequenceGenerator ctr: Invalid Inputs");
- org.drip.numerical.eigen.QREigenComponentExtractor qrece = new
- org.drip.numerical.eigen.QREigenComponentExtractor (80, 0.00001);
- org.drip.numerical.eigen.EigenComponent[] aEC = qrece.orderedEigenComponentArray (aadblCorrelation);
- if (null == aEC || 0 == aEC.length)
- throw new java.lang.Exception ("PrincipalFactorSequenceGenerator ctr: Invalid Inputs");
- double dblNormalizer = 0.;
- _adblFactorWeight = new double[iNumFactor];
- _aadblFactor = new double[iNumFactor][iNumVariate];
- for (int i = 0; i < iNumFactor; ++i) {
- for (int j = 0; j < iNumVariate; ++j)
- _aadblFactor[i] = aEC[i].eigenVector();
- _adblFactorWeight[i] = aEC[i].eigenValue();
- dblNormalizer += _adblFactorWeight[i] * _adblFactorWeight[i];
- }
- dblNormalizer = java.lang.Math.sqrt (dblNormalizer);
- for (int i = 0; i < iNumFactor; ++i)
- _adblFactorWeight[i] /= dblNormalizer;
- }
- /**
- * Retrieve the Number of Factors
- *
- * @return The Number of Factors
- */
- public int numFactor()
- {
- return _adblFactorWeight.length;
- }
- /**
- * Retrieve the Principal Component Factor Array
- *
- * @return The Principal Component Factor Array
- */
- public double[][] factors()
- {
- return _aadblFactor;
- }
- /**
- * Retrieve the Array of Factor Weights
- *
- * @return The Array of Factor Weights
- */
- public double[] factorWeight()
- {
- return _adblFactorWeight;
- }
- @Override public double[] random()
- {
- double[] adblBaseRandom = super.random();
- int iNumVariate = _aadblFactor[0].length;
- int iNumFactor = _adblFactorWeight.length;
- double[] adblRandom = new double[iNumFactor];
- if (iNumFactor == iNumVariate) return adblBaseRandom;
- for (int i = 0; i < iNumFactor; ++i) {
- adblRandom[i] = 0.;
- for (int j = 0; j < iNumVariate; ++j)
- adblRandom[i] += _aadblFactor[i][j] * adblBaseRandom[j];
- }
- return adblRandom;
- }
- }