CurvatureResponseCornishFischer.java

  1. package org.drip.simm.foundation;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  *
  10.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  11.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  12.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  13.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  14.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  15.  *      and computational support.
  16.  *  
  17.  *      https://lakshmidrip.github.io/DROP/
  18.  *  
  19.  *  DROP is composed of three modules:
  20.  *  
  21.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  22.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  23.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  24.  *
  25.  *  DROP Product Core implements libraries for the following:
  26.  *  - Fixed Income Analytics
  27.  *  - Loan Analytics
  28.  *  - Transaction Cost Analytics
  29.  *
  30.  *  DROP Portfolio Core implements libraries for the following:
  31.  *  - Asset Allocation Analytics
  32.  *  - Asset Liability Management Analytics
  33.  *  - Capital Estimation Analytics
  34.  *  - Exposure Analytics
  35.  *  - Margin Analytics
  36.  *  - XVA Analytics
  37.  *
  38.  *  DROP Computational Core implements libraries for the following:
  39.  *  - Algorithm Support
  40.  *  - Computation Support
  41.  *  - Function Analysis
  42.  *  - Model Validation
  43.  *  - Numerical Analysis
  44.  *  - Numerical Optimizer
  45.  *  - Spline Builder
  46.  *  - Statistical Learning
  47.  *
  48.  *  Documentation for DROP is Spread Over:
  49.  *
  50.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  51.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  52.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  53.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  54.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  55.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  56.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  57.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  58.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  59.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  60.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  61.  *
  62.  *  Licensed under the Apache License, Version 2.0 (the "License");
  63.  *      you may not use this file except in compliance with the License.
  64.  *  
  65.  *  You may obtain a copy of the License at
  66.  *      http://www.apache.org/licenses/LICENSE-2.0
  67.  *  
  68.  *  Unless required by applicable law or agreed to in writing, software
  69.  *      distributed under the License is distributed on an "AS IS" BASIS,
  70.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  71.  *  
  72.  *  See the License for the specific language governing permissions and
  73.  *      limitations under the License.
  74.  */

  75. /**
  76.  * <i>CurvatureResponseCornishFischer</i> computes the Curvature Co-variance Scaling Factor using the
  77.  * Cumulative Curvature Sensitivities. The References are:
  78.  *
  79.  * <br><br>
  80.  *  <ul>
  81.  *      <li>
  82.  *          Andersen, L. B. G., M. Pykhtin, and A. Sokol (2017): Credit Exposure in the Presence of Initial
  83.  *              Margin https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2806156 <b>eSSRN</b>
  84.  *      </li>
  85.  *      <li>
  86.  *          Albanese, C., S. Caenazzo, and O. Frankel (2017): Regression Sensitivities for Initial Margin
  87.  *              Calculations https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2763488 <b>eSSRN</b>
  88.  *      </li>
  89.  *      <li>
  90.  *          Anfuso, F., D. Aziz, P. Giltinan, and K. Loukopoulus (2017): A Sound Modeling and Back-testing
  91.  *              Framework for Forecasting Initial Margin Requirements
  92.  *                  https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2716279 <b>eSSRN</b>
  93.  *      </li>
  94.  *      <li>
  95.  *          Caspers, P., P. Giltinan, R. Lichters, and N. Nowaczyk (2017): Forecasting Initial Margin
  96.  *              Requirements - A Model Evaluation https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2911167
  97.  *                  <b>eSSRN</b>
  98.  *      </li>
  99.  *      <li>
  100.  *          International Swaps and Derivatives Association (2017): SIMM v2.0 Methodology
  101.  *              https://www.isda.org/a/oFiDE/isda-simm-v2.pdf
  102.  *      </li>
  103.  *  </ul>
  104.  *
  105.  * <br><br>
  106.  *  <ul>
  107.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/PortfolioCore.md">Portfolio Core Module</a></li>
  108.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/MarginAnalyticsLibrary.md">Initial and Variation Margin Analytics</a></li>
  109.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/simm/README.md">Initial Margin Analytics based on ISDA SIMM and its Variants</a></li>
  110.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/simm/foundation/README.md">Foundation Utilities for ISDA SIMM</a></li>
  111.  *  </ul>
  112.  * <br><br>
  113.  *
  114.  * @author Lakshmi Krishnamurthy
  115.  */

  116. public class CurvatureResponseCornishFischer implements org.drip.simm.foundation.CurvatureResponse
  117. {

  118.     /**
  119.      * ISDA SIMM VaR Curvature Cut-off
  120.      */

  121.     public static final double CURVATURE_VAR_CUT_OFF = 0.995;

  122.     private double _varCutoff = java.lang.Double.NaN;
  123.     private double _lambdaPlateauPeak = java.lang.Double.NaN;

  124.     /**
  125.      * Construct the Standard Instance of CurvatureResponseCornishFischer
  126.      *
  127.      * @return The Standard Instance of CurvatureResponseCornishFischer
  128.      */

  129.     public static final CurvatureResponseCornishFischer Standard()
  130.     {
  131.         try
  132.         {
  133.             return new CurvatureResponseCornishFischer (CURVATURE_VAR_CUT_OFF);
  134.         }
  135.         catch (java.lang.Exception e)
  136.         {
  137.             e.printStackTrace();
  138.         }

  139.         return null;
  140.     }

  141.     /**
  142.      * CurvatureResponseCornishFischer Constructor
  143.      *
  144.      * @param varCutoff VaR Cut-off
  145.      *
  146.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  147.      */

  148.     public CurvatureResponseCornishFischer (
  149.         final double varCutoff)
  150.         throws java.lang.Exception
  151.     {
  152.         if (!org.drip.numerical.common.NumberUtil.IsValid (_varCutoff = varCutoff) ||
  153.                 0. > _varCutoff || 1. < _varCutoff)
  154.         {
  155.             throw new java.lang.Exception ("CurvatureResponseCornishFischer Constructor => Invalid Inputs");
  156.         }

  157.         double tailVariate = org.drip.measure.gaussian.NormalQuadrature.InverseCDF (_varCutoff);

  158.         _lambdaPlateauPeak = tailVariate * tailVariate - 1.;
  159.     }

  160.     /**
  161.      * Retrieve the VaR Cut-off
  162.      *
  163.      * @return The VaR Cut-off
  164.      */

  165.     public double varCutoff()
  166.     {
  167.         return _varCutoff;
  168.     }

  169.     /**
  170.      * Retrieve the Lambda Plateau Peak
  171.      *
  172.      * @return The Lambda Plateau Peak
  173.      */

  174.     public double lambdaPlateauPeak()
  175.     {
  176.         return _lambdaPlateauPeak;
  177.     }

  178.     /**
  179.      * Compute the Lambda from the Curvature Sensitivities
  180.      *
  181.      * @param cumulativeRiskFactorSensitivity Cumulative Risk Factor Sensitivity
  182.      * @param cumulativeRiskFactorSensitivityPositive Cumulative Risk Factor Sensitivity Positive
  183.      *
  184.      * @return The Lambda
  185.      *
  186.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  187.      */

  188.     @Override public double lambda (
  189.         final double cumulativeRiskFactorSensitivity,
  190.         final double cumulativeRiskFactorSensitivityPositive)
  191.         throws java.lang.Exception
  192.     {
  193.         if (!org.drip.numerical.common.NumberUtil.IsValid (cumulativeRiskFactorSensitivity) ||
  194.             !org.drip.numerical.common.NumberUtil.IsValid (cumulativeRiskFactorSensitivityPositive) ||
  195.                 0. > cumulativeRiskFactorSensitivityPositive)
  196.         {
  197.             throw new java.lang.Exception ("CurvatureResponseCornishFischer::lambda => Invalid Inputs");
  198.         }

  199.         double theta = java.lang.Math.min (
  200.             0. == cumulativeRiskFactorSensitivityPositive ? 0. :
  201.                 cumulativeRiskFactorSensitivity / cumulativeRiskFactorSensitivityPositive,
  202.             0.
  203.         );

  204.         return _lambdaPlateauPeak * (1. + theta) - theta;
  205.     }
  206. }