RiskGroupPrincipalCovariance.java

  1. package org.drip.simm.foundation;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  *
  10.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  11.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  12.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  13.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  14.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  15.  *      and computational support.
  16.  *  
  17.  *      https://lakshmidrip.github.io/DROP/
  18.  *  
  19.  *  DROP is composed of three modules:
  20.  *  
  21.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  22.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  23.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  24.  *
  25.  *  DROP Product Core implements libraries for the following:
  26.  *  - Fixed Income Analytics
  27.  *  - Loan Analytics
  28.  *  - Transaction Cost Analytics
  29.  *
  30.  *  DROP Portfolio Core implements libraries for the following:
  31.  *  - Asset Allocation Analytics
  32.  *  - Asset Liability Management Analytics
  33.  *  - Capital Estimation Analytics
  34.  *  - Exposure Analytics
  35.  *  - Margin Analytics
  36.  *  - XVA Analytics
  37.  *
  38.  *  DROP Computational Core implements libraries for the following:
  39.  *  - Algorithm Support
  40.  *  - Computation Support
  41.  *  - Function Analysis
  42.  *  - Model Validation
  43.  *  - Numerical Analysis
  44.  *  - Numerical Optimizer
  45.  *  - Spline Builder
  46.  *  - Statistical Learning
  47.  *
  48.  *  Documentation for DROP is Spread Over:
  49.  *
  50.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  51.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  52.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  53.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  54.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  55.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  56.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  57.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  58.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  59.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  60.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  61.  *
  62.  *  Licensed under the Apache License, Version 2.0 (the "License");
  63.  *      you may not use this file except in compliance with the License.
  64.  *  
  65.  *  You may obtain a copy of the License at
  66.  *      http://www.apache.org/licenses/LICENSE-2.0
  67.  *  
  68.  *  Unless required by applicable law or agreed to in writing, software
  69.  *      distributed under the License is distributed on an "AS IS" BASIS,
  70.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  71.  *  
  72.  *  See the License for the specific language governing permissions and
  73.  *      limitations under the License.
  74.  */

  75. /**
  76.  * <i>RiskGroupPrincipalCovariance</i> contains the Cross Risk-Group Principal Component Based Co-variance.
  77.  * The References are:
  78.  *
  79.  * <br><br>
  80.  *  <ul>
  81.  *      <li>
  82.  *          Andersen, L. B. G., M. Pykhtin, and A. Sokol (2017): Credit Exposure in the Presence of Initial
  83.  *              Margin https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2806156 <b>eSSRN</b>
  84.  *      </li>
  85.  *      <li>
  86.  *          Albanese, C., S. Caenazzo, and O. Frankel (2017): Regression Sensitivities for Initial Margin
  87.  *              Calculations https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2763488 <b>eSSRN</b>
  88.  *      </li>
  89.  *      <li>
  90.  *          Anfuso, F., D. Aziz, P. Giltinan, and K. Loukopoulus (2017): A Sound Modeling and Back-testing
  91.  *              Framework for Forecasting Initial Margin Requirements
  92.  *                  https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2716279 <b>eSSRN</b>
  93.  *      </li>
  94.  *      <li>
  95.  *          Caspers, P., P. Giltinan, R. Lichters, and N. Nowaczyk (2017): Forecasting Initial Margin
  96.  *              Requirements - A Model Evaluation https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2911167
  97.  *                  <b>eSSRN</b>
  98.  *      </li>
  99.  *      <li>
  100.  *          International Swaps and Derivatives Association (2017): SIMM v2.0 Methodology
  101.  *              https://www.isda.org/a/oFiDE/isda-simm-v2.pdf
  102.  *      </li>
  103.  *  </ul>
  104.  *
  105.  * <br><br>
  106.  *  <ul>
  107.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/PortfolioCore.md">Portfolio Core Module</a></li>
  108.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/MarginAnalyticsLibrary.md">Initial and Variation Margin Analytics</a></li>
  109.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/simm/README.md">Initial Margin Analytics based on ISDA SIMM and its Variants</a></li>
  110.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/simm/foundation/README.md">Foundation Utilities for ISDA SIMM</a></li>
  111.  *  </ul>
  112.  * <br><br>
  113.  *
  114.  * @author Lakshmi Krishnamurthy
  115.  */

  116. public class RiskGroupPrincipalCovariance
  117. {
  118.     private double _extraGroupCorrelation = java.lang.Double.NaN;
  119.     private org.drip.numerical.eigen.EigenComponent _principalEigenComponent = null;

  120.     /**
  121.      * Construct the Standard RiskGroupPrincipalCovariance Instance from the Bucket Correlation Matrix and
  122.      *  the Cross Correlation Entry
  123.      *
  124.      * @param intraGroupCorrelationMatrix The Intra-Group Correlation Matrix
  125.      * @param extraGroupCorrelation Cross Group Correlation
  126.      *
  127.      * @return The Standard RiskGroupPrincipalCovariance Instance
  128.      */

  129.     public static final RiskGroupPrincipalCovariance Standard (
  130.         final double[][] intraGroupCorrelationMatrix,
  131.         final double extraGroupCorrelation)
  132.     {
  133.         try
  134.         {
  135.             return new RiskGroupPrincipalCovariance (
  136.                 new org.drip.numerical.eigen.PowerIterationComponentExtractor (
  137.                     30,
  138.                     0.000001,
  139.                     false
  140.                 ).principalComponent (intraGroupCorrelationMatrix),
  141.                 extraGroupCorrelation
  142.             );
  143.         }
  144.         catch (java.lang.Exception e)
  145.         {
  146.             e.printStackTrace();
  147.         }

  148.         return null;
  149.     }

  150.     /**
  151.      * RiskGroupPrincipalCovariance Constructor
  152.      *
  153.      * @param principalEigenComponent Intra-Group Principal Eigen-Component
  154.      * @param extraGroupCorrelation Cross Group Correlation
  155.      *
  156.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  157.      */

  158.     public RiskGroupPrincipalCovariance (
  159.         final org.drip.numerical.eigen.EigenComponent principalEigenComponent,
  160.         final double extraGroupCorrelation)
  161.         throws java.lang.Exception
  162.     {
  163.         if (null == (_principalEigenComponent = principalEigenComponent) ||
  164.             !org.drip.numerical.common.NumberUtil.IsValid (_extraGroupCorrelation = extraGroupCorrelation) ||
  165.                 -1. > _extraGroupCorrelation || 1. < _extraGroupCorrelation)
  166.         {
  167.             throw new java.lang.Exception ("RiskGroupPrincipalCovariance Constructor => Invalid Inputs");
  168.         }
  169.     }

  170.     /**
  171.      * Retrieve the Intra-Group Principal Eigen-Component
  172.      *
  173.      * @return The Intra-Group Principal Eigen-Component
  174.      */

  175.     public org.drip.numerical.eigen.EigenComponent principalEigenComponent()
  176.     {
  177.         return _principalEigenComponent;
  178.     }

  179.     /**
  180.      * Retrieve the Cross Group Correlation
  181.      *
  182.      * @return The Cross Group Correlation
  183.      */

  184.     public double extraGroupCorrelation()
  185.     {
  186.         return _extraGroupCorrelation;
  187.     }

  188.     /**
  189.      * Retrieve the Scaled Principal Eigen-vector
  190.      *
  191.      * @return The Scaled Principal Eigen-vector
  192.      */

  193.     public double[] scaledPrincipalEigenvector()
  194.     {
  195.         double scaleFactor = java.lang.Math.sqrt (_principalEigenComponent.eigenValue());

  196.         double[] principalEigenvector = _principalEigenComponent.eigenVector();

  197.         int componentCount = principalEigenvector.length;
  198.         double[] scaledPrincipalEigenvector = new double[componentCount];

  199.         for (int componentIndex = 0; componentIndex < componentCount; ++componentIndex)
  200.         {
  201.             scaledPrincipalEigenvector[componentIndex] = principalEigenvector[componentIndex] * scaleFactor;
  202.         }

  203.         return scaledPrincipalEigenvector;
  204.     }

  205.     /**
  206.      * Retrieve the Unadjusted Cross-Group Co-variance
  207.      *
  208.      * @return The Unadjusted Cross-Group Co-variance
  209.      */

  210.     public double[][] unadjustedCovariance()
  211.     {
  212.         double[] scaledPrincipalEigenvector = scaledPrincipalEigenvector();

  213.         return org.drip.numerical.linearalgebra.Matrix.CrossProduct (
  214.             scaledPrincipalEigenvector,
  215.             scaledPrincipalEigenvector
  216.         );
  217.     }

  218.     /**
  219.      * Retrieve the Adjusted Cross-Group Co-variance
  220.      *
  221.      * @return The Adjusted Cross-Group Co-variance
  222.      */

  223.     public double[][] adjustedCovariance()
  224.     {
  225.         return org.drip.numerical.linearalgebra.Matrix.Scale2D (
  226.             unadjustedCovariance(),
  227.             _extraGroupCorrelation
  228.         );
  229.     }
  230. }