NormedRxToNormedRdFinite.java

  1. package org.drip.spaces.functionclass;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  12.  *
  13.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  14.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  15.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  16.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  17.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  18.  *      and computational support.
  19.  *  
  20.  *      https://lakshmidrip.github.io/DROP/
  21.  *  
  22.  *  DROP is composed of three modules:
  23.  *  
  24.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  25.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  26.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  27.  *
  28.  *  DROP Product Core implements libraries for the following:
  29.  *  - Fixed Income Analytics
  30.  *  - Loan Analytics
  31.  *  - Transaction Cost Analytics
  32.  *
  33.  *  DROP Portfolio Core implements libraries for the following:
  34.  *  - Asset Allocation Analytics
  35.  *  - Asset Liability Management Analytics
  36.  *  - Capital Estimation Analytics
  37.  *  - Exposure Analytics
  38.  *  - Margin Analytics
  39.  *  - XVA Analytics
  40.  *
  41.  *  DROP Computational Core implements libraries for the following:
  42.  *  - Algorithm Support
  43.  *  - Computation Support
  44.  *  - Function Analysis
  45.  *  - Model Validation
  46.  *  - Numerical Analysis
  47.  *  - Numerical Optimizer
  48.  *  - Spline Builder
  49.  *  - Statistical Learning
  50.  *
  51.  *  Documentation for DROP is Spread Over:
  52.  *
  53.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  54.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  55.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  56.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  57.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  58.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  59.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  60.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  61.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  62.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  63.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  64.  *
  65.  *  Licensed under the Apache License, Version 2.0 (the "License");
  66.  *      you may not use this file except in compliance with the License.
  67.  *  
  68.  *  You may obtain a copy of the License at
  69.  *      http://www.apache.org/licenses/LICENSE-2.0
  70.  *  
  71.  *  Unless required by applicable law or agreed to in writing, software
  72.  *      distributed under the License is distributed on an "AS IS" BASIS,
  73.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  74.  *  
  75.  *  See the License for the specific language governing permissions and
  76.  *      limitations under the License.
  77.  */

  78. /**
  79.  * <i>NormedRxToNormedRdFinite</i> implements the Class F with f E f : Normed R<sup>x</sup> To Normed
  80.  * R<sup>d</sup> Space of Finite Functions. The References are:
  81.  *
  82.  * <br><br>
  83.  *  <ul>
  84.  *      <li>
  85.  *          Carl, B. (1985): Inequalities of the Bernstein-Jackson type and the Degree of Compactness of
  86.  *              Operators in Banach Spaces <i>Annals of the Fourier Institute</i> <b>35 (3)</b> 79-118
  87.  *      </li>
  88.  *      <li>
  89.  *          Carl, B., and I. Stephani (1990): <i>Entropy, Compactness, and the Approximation of Operators</i>
  90.  *              <b>Cambridge University Press</b> Cambridge UK
  91.  *      </li>
  92.  *      <li>
  93.  *          Williamson, R. C., A. J. Smola, and B. Scholkopf (2000): Entropy Numbers of Linear Function
  94.  *              Classes, in: <i>Proceedings of the 13th Annual Conference on Computational Learning
  95.  *                  Theory</i> <b>ACM</b> New York
  96.  *      </li>
  97.  *  </ul>
  98.  *
  99.  * <br><br>
  100.  *  <ul>
  101.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  102.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
  103.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/README.md">R<sup>1</sup> and R<sup>d</sup> Vector/Tensor Spaces (Validated and/or Normed), and Function Classes</a></li>
  104.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/functionclass/README.md">Normed Finite Spaces Function Class</a></li>
  105.  *  </ul>
  106.  * <br><br>
  107.  *
  108.  * @author Lakshmi Krishnamurthy
  109.  */

  110. public class NormedRxToNormedRdFinite extends org.drip.spaces.functionclass.NormedRxToNormedRxFinite {
  111.     private org.drip.spaces.rxtord.NormedRxToNormedRd[] _aNormedRxToNormedRd = null;

  112.     /**
  113.      * NormedRxToNormedRdFinite Constructor
  114.      *
  115.      * @param dblMaureyConstant Maurey Constant
  116.      * @param aNormedRxToNormedRd Array of the Normed R^x To Normed R^d Spaces
  117.      *  
  118.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  119.      */

  120.     public NormedRxToNormedRdFinite (
  121.         final double dblMaureyConstant,
  122.         final org.drip.spaces.rxtord.NormedRxToNormedRd[] aNormedRxToNormedRd)
  123.         throws java.lang.Exception
  124.     {
  125.         super (dblMaureyConstant);

  126.         int iClassSize = null == (_aNormedRxToNormedRd = aNormedRxToNormedRd) ? 0 :
  127.             _aNormedRxToNormedRd.length;

  128.         if (null != _aNormedRxToNormedRd && 0 == iClassSize)
  129.             throw new java.lang.Exception ("NormedRxToNormedRdFinite ctr: Invalid Inputs");

  130.         for (int i = 0; i < iClassSize; ++i) {
  131.             if (null == _aNormedRxToNormedRd[i])
  132.                 throw new java.lang.Exception ("NormedRxToNormedRdFinite ctr: Invalid Inputs");
  133.         }
  134.     }

  135.     @Override public org.drip.spaces.cover.FunctionClassCoveringBounds agnosticCoveringNumberBounds()
  136.     {
  137.         return null;
  138.     }

  139.     @Override public org.drip.spaces.metric.GeneralizedMetricVectorSpace inputMetricVectorSpace()
  140.     {
  141.         return null == _aNormedRxToNormedRd ? null : _aNormedRxToNormedRd[0].inputMetricVectorSpace();
  142.     }

  143.     @Override public org.drip.spaces.metric.RdNormed outputMetricVectorSpace()
  144.     {
  145.         return null == _aNormedRxToNormedRd ? null : _aNormedRxToNormedRd[0].outputMetricVectorSpace();
  146.     }

  147.     /**
  148.      * Retrieve the Array of Function Spaces in the Class
  149.      *
  150.      * @return The Array of Function Spaces in the Class
  151.      */

  152.     public org.drip.spaces.rxtord.NormedRxToNormedRd[] functionSpaces()
  153.     {
  154.         return _aNormedRxToNormedRd;
  155.     }

  156.     /**
  157.      * Estimate for the Function Class Population Covering Number Array, one for each dimension
  158.      *
  159.      * @param adblCover The Size of the Cover Array
  160.      *
  161.      * @return Function Class Population Covering Number Estimate Array, one for each dimension
  162.      */

  163.     public double[] populationCoveringNumber (
  164.         final double[] adblCover)
  165.     {
  166.         if (null == _aNormedRxToNormedRd || null == adblCover) return null;

  167.         int iFunctionSpaceSize = _aNormedRxToNormedRd.length;

  168.         if (iFunctionSpaceSize != adblCover.length) return null;

  169.         double[] adblPopulationCoveringNumber = _aNormedRxToNormedRd[0].populationCoveringNumber
  170.             (adblCover[0]);

  171.         if (!org.drip.numerical.common.NumberUtil.IsValid (adblPopulationCoveringNumber)) return null;

  172.         for (int i = 1; i < iFunctionSpaceSize; ++i) {
  173.             double[] adblFunctionPopulationCoveringNumber = _aNormedRxToNormedRd[i].populationCoveringNumber
  174.                 (adblCover[i]);

  175.             if (!org.drip.numerical.common.NumberUtil.IsValid (adblFunctionPopulationCoveringNumber))
  176.                 return null;

  177.             int iDimension = adblFunctionPopulationCoveringNumber.length;

  178.             for (int j = 0; j < iDimension; ++j) {
  179.                 if (adblPopulationCoveringNumber[j] < adblFunctionPopulationCoveringNumber[j])
  180.                     adblPopulationCoveringNumber[j] = adblFunctionPopulationCoveringNumber[j];
  181.             }
  182.         }

  183.         return adblPopulationCoveringNumber;
  184.     }

  185.     /**
  186.      * Estimate for the Function Class Population Covering Number Array, one for each dimension
  187.      *
  188.      * @param dblCover The Cover
  189.      *
  190.      * @return Function Class Population Covering Number Estimate Array, one for each dimension
  191.      */

  192.     public double[] populationCoveringNumber (
  193.         final double dblCover)
  194.     {
  195.         int iDimension = outputMetricVectorSpace().dimension();

  196.         double[] adblCover = new double[iDimension];

  197.         for (int i = 0; i < iDimension; ++i)
  198.             adblCover[i] = dblCover;

  199.         return populationCoveringNumber (adblCover);
  200.     }

  201.     /**
  202.      * Estimate for the Function Class Population Supremum Covering Number Array, one for each dimension
  203.      *
  204.      * @param adblCover The Size of the Cover Array
  205.      *
  206.      * @return Function Class Population Supremum Covering Number Estimate Array, one for each dimension
  207.      */

  208.     public double[] populationSupremumCoveringNumber (
  209.         final double[] adblCover)
  210.     {
  211.         if (null == _aNormedRxToNormedRd || null == adblCover) return null;

  212.         int iFunctionSpaceSize = _aNormedRxToNormedRd.length;

  213.         if (iFunctionSpaceSize != adblCover.length) return null;

  214.         double[] adblPopulationSupremumCoveringNumber =
  215.             _aNormedRxToNormedRd[0].populationSupremumCoveringNumber (adblCover[0]);

  216.         if (!org.drip.numerical.common.NumberUtil.IsValid (adblPopulationSupremumCoveringNumber)) return null;

  217.         for (int i = 1; i < iFunctionSpaceSize; ++i) {
  218.             double[] adblFunctionPopulationSupremumCoveringNumber =
  219.                 _aNormedRxToNormedRd[i].populationSupremumCoveringNumber (adblCover[i]);

  220.             if (!org.drip.numerical.common.NumberUtil.IsValid (adblFunctionPopulationSupremumCoveringNumber))
  221.                 return null;

  222.             int iDimension = adblFunctionPopulationSupremumCoveringNumber.length;

  223.             for (int j = 0; j < iDimension; ++j) {
  224.                 if (adblPopulationSupremumCoveringNumber[j] <
  225.                     adblFunctionPopulationSupremumCoveringNumber[j])
  226.                     adblPopulationSupremumCoveringNumber[j] =
  227.                         adblFunctionPopulationSupremumCoveringNumber[j];
  228.             }
  229.         }

  230.         return adblPopulationSupremumCoveringNumber;
  231.     }

  232.     /**
  233.      * Estimate for the Function Class Population Supremum Covering Number Array, one for each dimension
  234.      *
  235.      * @param dblCover The Cover
  236.      *
  237.      * @return Function Class Population Covering Supremum Number Estimate Array, one for each dimension
  238.      */

  239.     public double[] populationSupremumCoveringNumber (
  240.         final double dblCover)
  241.     {
  242.         int iDimension = outputMetricVectorSpace().dimension();

  243.         double[] adblCover = new double[iDimension];

  244.         for (int i = 0; i < iDimension; ++i)
  245.             adblCover[i] = dblCover;

  246.         return populationSupremumCoveringNumber (adblCover);
  247.     }

  248.     /**
  249.      * Estimate for the Scale-Sensitive Sample Covering Number Array for the specified Cover Size
  250.      *
  251.      * @param gvvi The Validated Instance Vector Sequence
  252.      * @param adblCover The Size of the Cover Array
  253.      *
  254.      * @return The Scale-Sensitive Sample Covering Number Array for the specified Cover Size
  255.      */

  256.     public double[] sampleCoveringNumber (
  257.         final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
  258.         final double[] adblCover)
  259.     {
  260.         if (null == _aNormedRxToNormedRd || null == adblCover) return null;

  261.         int iFunctionSpaceSize = _aNormedRxToNormedRd.length;

  262.         if (iFunctionSpaceSize != adblCover.length) return null;

  263.         double[] adblSampleCoveringNumber = _aNormedRxToNormedRd[0].sampleCoveringNumber (gvvi,
  264.             adblCover[0]);

  265.         if (!org.drip.numerical.common.NumberUtil.IsValid (adblSampleCoveringNumber)) return null;

  266.         for (int i = 1; i < iFunctionSpaceSize; ++i) {
  267.             double[] adblFunctionSampleCoveringNumber = _aNormedRxToNormedRd[i].sampleCoveringNumber (gvvi,
  268.                 adblCover[i]);

  269.             if (!org.drip.numerical.common.NumberUtil.IsValid (adblFunctionSampleCoveringNumber)) return null;

  270.             int iDimension = adblFunctionSampleCoveringNumber.length;

  271.             for (int j = 0; j < iDimension; ++j) {
  272.                 if (adblSampleCoveringNumber[j] < adblFunctionSampleCoveringNumber[j])
  273.                     adblSampleCoveringNumber[j] = adblFunctionSampleCoveringNumber[j];
  274.             }
  275.         }

  276.         return adblSampleCoveringNumber;
  277.     }

  278.     /**
  279.      * Estimate for the Scale-Sensitive Sample Covering Number Array for the specified Cover Size
  280.      *
  281.      * @param gvvi The Validated Instance Vector Sequence
  282.      * @param dblCover The Size of the Cover Array
  283.      *
  284.      * @return The Scale-Sensitive Sample Covering Number Array for the specified Cover Size
  285.      */

  286.     public double[] sampleCoveringNumber (
  287.         final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
  288.         final double dblCover)
  289.     {
  290.         int iDimension = outputMetricVectorSpace().dimension();

  291.         double[] adblCover = new double[iDimension];

  292.         for (int i = 0; i < iDimension; ++i)
  293.             adblCover[i] = dblCover;

  294.         return sampleCoveringNumber (gvvi, adblCover);
  295.     }

  296.     /**
  297.      * Estimate for the Scale-Sensitive Sample Supremum Covering Number for the specified Cover Size
  298.      *
  299.      * @param gvvi The Validated Instance Vector Sequence
  300.      * @param adblCover The Size of the Cover Array
  301.      *
  302.      * @return The Scale-Sensitive Sample Supremum Covering Number for the specified Cover Size
  303.      */

  304.     public double[] sampleSupremumCoveringNumber (
  305.         final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
  306.         final double[] adblCover)
  307.     {
  308.         if (null == _aNormedRxToNormedRd || null == adblCover) return null;

  309.         int iFunctionSpaceSize = _aNormedRxToNormedRd.length;

  310.         if (iFunctionSpaceSize != adblCover.length) return null;

  311.         double[] adblSampleSupremumCoveringNumber = _aNormedRxToNormedRd[0].sampleSupremumCoveringNumber
  312.             (gvvi, adblCover[0]);

  313.         if (!org.drip.numerical.common.NumberUtil.IsValid (adblSampleSupremumCoveringNumber)) return null;

  314.         for (int i = 1; i < iFunctionSpaceSize; ++i) {
  315.             double[] adblFunctionSampleSupremumCoveringNumber =
  316.                 _aNormedRxToNormedRd[i].sampleSupremumCoveringNumber (gvvi, adblCover[i]);

  317.             if (!org.drip.numerical.common.NumberUtil.IsValid (adblFunctionSampleSupremumCoveringNumber))
  318.                 return null;

  319.             int iDimension = adblFunctionSampleSupremumCoveringNumber.length;

  320.             for (int j = 0; j < iDimension; ++j) {
  321.                 if (adblSampleSupremumCoveringNumber[j] < adblFunctionSampleSupremumCoveringNumber[j])
  322.                     adblSampleSupremumCoveringNumber[j] = adblFunctionSampleSupremumCoveringNumber[j];
  323.             }
  324.         }

  325.         return adblSampleSupremumCoveringNumber;
  326.     }

  327.     /**
  328.      * Estimate for the Scale-Sensitive Sample Supremum Covering Number for the specified Cover Size
  329.      *
  330.      * @param gvvi The Validated Instance Vector Sequence
  331.      * @param dblCover The Cover
  332.      *
  333.      * @return The Scale-Sensitive Sample Supremum Covering Number for the specified Cover Size
  334.      */

  335.     public double[] sampleSupremumCoveringNumber (
  336.         final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
  337.         final double dblCover)
  338.     {
  339.         int iDimension = outputMetricVectorSpace().dimension();

  340.         double[] adblCover = new double[iDimension];

  341.         for (int i = 0; i < iDimension; ++i)
  342.             adblCover[i] = dblCover;

  343.         return sampleSupremumCoveringNumber (gvvi, adblCover);
  344.     }

  345.     /**
  346.      * Compute the Population R^d Metric Norm
  347.      *
  348.      * @return The Population R^d Metric Norm
  349.      */

  350.     public double[] populationRdMetricNorm()
  351.     {
  352.         if (null == _aNormedRxToNormedRd) return null;

  353.         int iNumFunction = _aNormedRxToNormedRd.length;

  354.         double[] adblPopulationRdMetricNorm = _aNormedRxToNormedRd[0].populationMetricNorm();

  355.         if (!org.drip.numerical.common.NumberUtil.IsValid (adblPopulationRdMetricNorm)) return null;

  356.         for (int i = 1; i < iNumFunction; ++i) {
  357.             double[] adblPopulationMetricNorm = _aNormedRxToNormedRd[i].populationMetricNorm();

  358.             if (!org.drip.numerical.common.NumberUtil.IsValid (adblPopulationMetricNorm)) return null;

  359.             int iDimension = adblPopulationMetricNorm.length;

  360.             for (int j = 0; j < iDimension; ++j) {
  361.                 if (adblPopulationRdMetricNorm[j] < adblPopulationMetricNorm[j])
  362.                     adblPopulationRdMetricNorm[j] = adblPopulationMetricNorm[j];
  363.             }
  364.         }

  365.         return adblPopulationRdMetricNorm;
  366.     }

  367.     /**
  368.      * Compute the Population R^d Supremum Norm
  369.      *
  370.      * @return The Population R^d Supremum Norm
  371.      */

  372.     public double[] populationRdSupremumNorm()
  373.     {
  374.         if (null == _aNormedRxToNormedRd) return null;

  375.         int iNumFunction = _aNormedRxToNormedRd.length;

  376.         double[] adblPopulationRdSupremumNorm = _aNormedRxToNormedRd[0].populationESS();

  377.         if (!org.drip.numerical.common.NumberUtil.IsValid (adblPopulationRdSupremumNorm)) return null;

  378.         for (int i = 1; i < iNumFunction; ++i) {
  379.             double[] adblPopulationSupremumNorm = _aNormedRxToNormedRd[i].populationESS();

  380.             if (!org.drip.numerical.common.NumberUtil.IsValid (adblPopulationSupremumNorm)) return null;

  381.             int iDimension = adblPopulationSupremumNorm.length;

  382.             for (int j = 0; j < iDimension; ++j) {
  383.                 if (adblPopulationRdSupremumNorm[j] < adblPopulationSupremumNorm[j])
  384.                     adblPopulationRdSupremumNorm[j] = adblPopulationSupremumNorm[j];
  385.             }
  386.         }

  387.         return adblPopulationRdSupremumNorm;
  388.     }

  389.     /**
  390.      * Compute the Sample R^d Metric Norm
  391.      *
  392.      * @param gvvi The Validated Vector Space Instance
  393.      *
  394.      * @return The Sample R^d Metric Norm
  395.      */

  396.     public double[] sampleRdMetricNorm (
  397.         final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
  398.     {
  399.         if (null == _aNormedRxToNormedRd) return null;

  400.         int iNumFunction = _aNormedRxToNormedRd.length;

  401.         double[] adblSampleRdMetricNorm = _aNormedRxToNormedRd[0].sampleMetricNorm (gvvi);

  402.         if (!org.drip.numerical.common.NumberUtil.IsValid (adblSampleRdMetricNorm)) return null;

  403.         for (int i = 1; i < iNumFunction; ++i) {
  404.             double[] adblSampleMetricNorm = _aNormedRxToNormedRd[i].sampleMetricNorm (gvvi);

  405.             if (!org.drip.numerical.common.NumberUtil.IsValid (adblSampleMetricNorm)) return null;

  406.             int iDimension = adblSampleMetricNorm.length;

  407.             for (int j = 0; j < iDimension; ++j) {
  408.                 if (adblSampleRdMetricNorm[j] < adblSampleMetricNorm[j])
  409.                     adblSampleRdMetricNorm[j] = adblSampleMetricNorm[j];
  410.             }
  411.         }

  412.         return adblSampleRdMetricNorm;
  413.     }

  414.     /**
  415.      * Compute the Sample R^d Supremum Norm
  416.      *
  417.      * @param gvvi The Validated Vector Space Instance
  418.      *
  419.      * @return The Sample R^d Supremum Norm
  420.      */

  421.     public double[] sampleRdSupremumNorm (
  422.         final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
  423.     {
  424.         if (null == _aNormedRxToNormedRd) return null;

  425.         int iNumFunction = _aNormedRxToNormedRd.length;

  426.         double[] adblSampleRdSupremumNorm = _aNormedRxToNormedRd[0].sampleSupremumNorm (gvvi);

  427.         if (!org.drip.numerical.common.NumberUtil.IsValid (adblSampleRdSupremumNorm)) return null;

  428.         for (int i = 1; i < iNumFunction; ++i) {
  429.             double[] adblSampleSupremumNorm = _aNormedRxToNormedRd[i].sampleSupremumNorm (gvvi);

  430.             if (!org.drip.numerical.common.NumberUtil.IsValid (adblSampleSupremumNorm)) return null;

  431.             int iDimension = adblSampleSupremumNorm.length;

  432.             for (int j = 0; j < iDimension; ++j) {
  433.                 if (adblSampleRdSupremumNorm[j] < adblSampleSupremumNorm[j])
  434.                     adblSampleRdSupremumNorm[j] = adblSampleSupremumNorm[j];
  435.             }
  436.         }

  437.         return adblSampleRdSupremumNorm;
  438.     }

  439.     @Override public double operatorPopulationMetricNorm()
  440.         throws java.lang.Exception
  441.     {
  442.         double[] adblPopulationMetricNorm = populationRdMetricNorm();

  443.         if (null == adblPopulationMetricNorm)
  444.             throw new java.lang.Exception
  445.                 ("NormedRxToNormedRdFinite::operatorPopulationMetricNorm => Invalid Inputs");

  446.         int iDimension = adblPopulationMetricNorm.length;
  447.         double dblOperatorPopulationMetricNorm = java.lang.Double.NaN;

  448.         if (0 == iDimension)
  449.             throw new java.lang.Exception
  450.                 ("NormedRxToNormedRdFinite::operatorPopulationMetricNorm => Invalid Inputs");

  451.         for (int j = 0; j < iDimension; ++j) {
  452.             if (0 == j)
  453.                 dblOperatorPopulationMetricNorm = adblPopulationMetricNorm[j];
  454.             else {
  455.                 if (dblOperatorPopulationMetricNorm < adblPopulationMetricNorm[j])
  456.                     dblOperatorPopulationMetricNorm = adblPopulationMetricNorm[j];
  457.             }
  458.         }

  459.         return dblOperatorPopulationMetricNorm;
  460.     }

  461.     @Override public double operatorPopulationSupremumNorm()
  462.         throws java.lang.Exception
  463.     {
  464.         double[] adblPopulationSupremumNorm = populationRdSupremumNorm();

  465.         if (null == adblPopulationSupremumNorm)
  466.             throw new java.lang.Exception
  467.                 ("NormedRxToNormedRdFinite::operatorPopulationSupremumNorm => Invalid Inputs");

  468.         int iDimension = adblPopulationSupremumNorm.length;
  469.         double dblOperatorPopulationSupremumNorm = java.lang.Double.NaN;

  470.         if (0 == iDimension)
  471.             throw new java.lang.Exception
  472.                 ("NormedRxToNormedRdFinite::operatorPopulationSupremumNorm => Invalid Inputs");

  473.         for (int j = 0; j < iDimension; ++j) {
  474.             if (0 == j)
  475.                 dblOperatorPopulationSupremumNorm = adblPopulationSupremumNorm[j];
  476.             else {
  477.                 if (dblOperatorPopulationSupremumNorm < adblPopulationSupremumNorm[j])
  478.                     dblOperatorPopulationSupremumNorm = adblPopulationSupremumNorm[j];
  479.             }
  480.         }

  481.         return dblOperatorPopulationSupremumNorm;
  482.     }

  483.     @Override public double operatorSampleMetricNorm (
  484.         final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
  485.         throws java.lang.Exception
  486.     {
  487.         double[] adblSampleMetricNorm = sampleRdMetricNorm (gvvi);

  488.         if (null == adblSampleMetricNorm)
  489.             throw new java.lang.Exception
  490.                 ("NormedRxToNormedRdFinite::operatorSampleMetricNorm => Invalid Inputs");

  491.         int iDimension = adblSampleMetricNorm.length;
  492.         double dblOperatorSampleMetricNorm = java.lang.Double.NaN;

  493.         if (0 == iDimension)
  494.             throw new java.lang.Exception
  495.                 ("NormedRxToNormedRdFinite::operatorSampleMetricNorm => Invalid Inputs");

  496.         for (int j = 0; j < iDimension; ++j) {
  497.             if (0 == j)
  498.                 dblOperatorSampleMetricNorm = adblSampleMetricNorm[j];
  499.             else {
  500.                 if (dblOperatorSampleMetricNorm < adblSampleMetricNorm[j])
  501.                     dblOperatorSampleMetricNorm = adblSampleMetricNorm[j];
  502.             }
  503.         }

  504.         return dblOperatorSampleMetricNorm;
  505.     }

  506.     @Override public double operatorSampleSupremumNorm (
  507.         final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
  508.         throws java.lang.Exception
  509.     {
  510.         double[] adblSampleSupremumNorm = sampleRdSupremumNorm (gvvi);

  511.         if (null == adblSampleSupremumNorm)
  512.             throw new java.lang.Exception
  513.                 ("NormedRxToNormedRdFinite::operatorSampleSupremumNorm => Invalid Inputs");

  514.         int iDimension = adblSampleSupremumNorm.length;
  515.         double dblOperatorSampleSupremumNorm = java.lang.Double.NaN;

  516.         if (0 == iDimension)
  517.             throw new java.lang.Exception
  518.                 ("NormedRxToNormedRdFinite::operatorSampleSupremumNorm => Invalid Inputs");

  519.         for (int j = 0; j < iDimension; ++j) {
  520.             if (0 == j)
  521.                 dblOperatorSampleSupremumNorm = adblSampleSupremumNorm[j];
  522.             else {
  523.                 if (dblOperatorSampleSupremumNorm < adblSampleSupremumNorm[j])
  524.                     dblOperatorSampleSupremumNorm = adblSampleSupremumNorm[j];
  525.             }
  526.         }

  527.         return dblOperatorSampleSupremumNorm;
  528.     }
  529. }