NormedRxToNormedRdFinite.java
- package org.drip.spaces.functionclass;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>NormedRxToNormedRdFinite</i> implements the Class F with f E f : Normed R<sup>x</sup> To Normed
- * R<sup>d</sup> Space of Finite Functions. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Carl, B. (1985): Inequalities of the Bernstein-Jackson type and the Degree of Compactness of
- * Operators in Banach Spaces <i>Annals of the Fourier Institute</i> <b>35 (3)</b> 79-118
- * </li>
- * <li>
- * Carl, B., and I. Stephani (1990): <i>Entropy, Compactness, and the Approximation of Operators</i>
- * <b>Cambridge University Press</b> Cambridge UK
- * </li>
- * <li>
- * Williamson, R. C., A. J. Smola, and B. Scholkopf (2000): Entropy Numbers of Linear Function
- * Classes, in: <i>Proceedings of the 13th Annual Conference on Computational Learning
- * Theory</i> <b>ACM</b> New York
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/README.md">R<sup>1</sup> and R<sup>d</sup> Vector/Tensor Spaces (Validated and/or Normed), and Function Classes</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/functionclass/README.md">Normed Finite Spaces Function Class</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class NormedRxToNormedRdFinite extends org.drip.spaces.functionclass.NormedRxToNormedRxFinite {
- private org.drip.spaces.rxtord.NormedRxToNormedRd[] _aNormedRxToNormedRd = null;
- /**
- * NormedRxToNormedRdFinite Constructor
- *
- * @param dblMaureyConstant Maurey Constant
- * @param aNormedRxToNormedRd Array of the Normed R^x To Normed R^d Spaces
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public NormedRxToNormedRdFinite (
- final double dblMaureyConstant,
- final org.drip.spaces.rxtord.NormedRxToNormedRd[] aNormedRxToNormedRd)
- throws java.lang.Exception
- {
- super (dblMaureyConstant);
- int iClassSize = null == (_aNormedRxToNormedRd = aNormedRxToNormedRd) ? 0 :
- _aNormedRxToNormedRd.length;
- if (null != _aNormedRxToNormedRd && 0 == iClassSize)
- throw new java.lang.Exception ("NormedRxToNormedRdFinite ctr: Invalid Inputs");
- for (int i = 0; i < iClassSize; ++i) {
- if (null == _aNormedRxToNormedRd[i])
- throw new java.lang.Exception ("NormedRxToNormedRdFinite ctr: Invalid Inputs");
- }
- }
- @Override public org.drip.spaces.cover.FunctionClassCoveringBounds agnosticCoveringNumberBounds()
- {
- return null;
- }
- @Override public org.drip.spaces.metric.GeneralizedMetricVectorSpace inputMetricVectorSpace()
- {
- return null == _aNormedRxToNormedRd ? null : _aNormedRxToNormedRd[0].inputMetricVectorSpace();
- }
- @Override public org.drip.spaces.metric.RdNormed outputMetricVectorSpace()
- {
- return null == _aNormedRxToNormedRd ? null : _aNormedRxToNormedRd[0].outputMetricVectorSpace();
- }
- /**
- * Retrieve the Array of Function Spaces in the Class
- *
- * @return The Array of Function Spaces in the Class
- */
- public org.drip.spaces.rxtord.NormedRxToNormedRd[] functionSpaces()
- {
- return _aNormedRxToNormedRd;
- }
- /**
- * Estimate for the Function Class Population Covering Number Array, one for each dimension
- *
- * @param adblCover The Size of the Cover Array
- *
- * @return Function Class Population Covering Number Estimate Array, one for each dimension
- */
- public double[] populationCoveringNumber (
- final double[] adblCover)
- {
- if (null == _aNormedRxToNormedRd || null == adblCover) return null;
- int iFunctionSpaceSize = _aNormedRxToNormedRd.length;
- if (iFunctionSpaceSize != adblCover.length) return null;
- double[] adblPopulationCoveringNumber = _aNormedRxToNormedRd[0].populationCoveringNumber
- (adblCover[0]);
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblPopulationCoveringNumber)) return null;
- for (int i = 1; i < iFunctionSpaceSize; ++i) {
- double[] adblFunctionPopulationCoveringNumber = _aNormedRxToNormedRd[i].populationCoveringNumber
- (adblCover[i]);
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblFunctionPopulationCoveringNumber))
- return null;
- int iDimension = adblFunctionPopulationCoveringNumber.length;
- for (int j = 0; j < iDimension; ++j) {
- if (adblPopulationCoveringNumber[j] < adblFunctionPopulationCoveringNumber[j])
- adblPopulationCoveringNumber[j] = adblFunctionPopulationCoveringNumber[j];
- }
- }
- return adblPopulationCoveringNumber;
- }
- /**
- * Estimate for the Function Class Population Covering Number Array, one for each dimension
- *
- * @param dblCover The Cover
- *
- * @return Function Class Population Covering Number Estimate Array, one for each dimension
- */
- public double[] populationCoveringNumber (
- final double dblCover)
- {
- int iDimension = outputMetricVectorSpace().dimension();
- double[] adblCover = new double[iDimension];
- for (int i = 0; i < iDimension; ++i)
- adblCover[i] = dblCover;
- return populationCoveringNumber (adblCover);
- }
- /**
- * Estimate for the Function Class Population Supremum Covering Number Array, one for each dimension
- *
- * @param adblCover The Size of the Cover Array
- *
- * @return Function Class Population Supremum Covering Number Estimate Array, one for each dimension
- */
- public double[] populationSupremumCoveringNumber (
- final double[] adblCover)
- {
- if (null == _aNormedRxToNormedRd || null == adblCover) return null;
- int iFunctionSpaceSize = _aNormedRxToNormedRd.length;
- if (iFunctionSpaceSize != adblCover.length) return null;
- double[] adblPopulationSupremumCoveringNumber =
- _aNormedRxToNormedRd[0].populationSupremumCoveringNumber (adblCover[0]);
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblPopulationSupremumCoveringNumber)) return null;
- for (int i = 1; i < iFunctionSpaceSize; ++i) {
- double[] adblFunctionPopulationSupremumCoveringNumber =
- _aNormedRxToNormedRd[i].populationSupremumCoveringNumber (adblCover[i]);
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblFunctionPopulationSupremumCoveringNumber))
- return null;
- int iDimension = adblFunctionPopulationSupremumCoveringNumber.length;
- for (int j = 0; j < iDimension; ++j) {
- if (adblPopulationSupremumCoveringNumber[j] <
- adblFunctionPopulationSupremumCoveringNumber[j])
- adblPopulationSupremumCoveringNumber[j] =
- adblFunctionPopulationSupremumCoveringNumber[j];
- }
- }
- return adblPopulationSupremumCoveringNumber;
- }
- /**
- * Estimate for the Function Class Population Supremum Covering Number Array, one for each dimension
- *
- * @param dblCover The Cover
- *
- * @return Function Class Population Covering Supremum Number Estimate Array, one for each dimension
- */
- public double[] populationSupremumCoveringNumber (
- final double dblCover)
- {
- int iDimension = outputMetricVectorSpace().dimension();
- double[] adblCover = new double[iDimension];
- for (int i = 0; i < iDimension; ++i)
- adblCover[i] = dblCover;
- return populationSupremumCoveringNumber (adblCover);
- }
- /**
- * Estimate for the Scale-Sensitive Sample Covering Number Array for the specified Cover Size
- *
- * @param gvvi The Validated Instance Vector Sequence
- * @param adblCover The Size of the Cover Array
- *
- * @return The Scale-Sensitive Sample Covering Number Array for the specified Cover Size
- */
- public double[] sampleCoveringNumber (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
- final double[] adblCover)
- {
- if (null == _aNormedRxToNormedRd || null == adblCover) return null;
- int iFunctionSpaceSize = _aNormedRxToNormedRd.length;
- if (iFunctionSpaceSize != adblCover.length) return null;
- double[] adblSampleCoveringNumber = _aNormedRxToNormedRd[0].sampleCoveringNumber (gvvi,
- adblCover[0]);
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblSampleCoveringNumber)) return null;
- for (int i = 1; i < iFunctionSpaceSize; ++i) {
- double[] adblFunctionSampleCoveringNumber = _aNormedRxToNormedRd[i].sampleCoveringNumber (gvvi,
- adblCover[i]);
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblFunctionSampleCoveringNumber)) return null;
- int iDimension = adblFunctionSampleCoveringNumber.length;
- for (int j = 0; j < iDimension; ++j) {
- if (adblSampleCoveringNumber[j] < adblFunctionSampleCoveringNumber[j])
- adblSampleCoveringNumber[j] = adblFunctionSampleCoveringNumber[j];
- }
- }
- return adblSampleCoveringNumber;
- }
- /**
- * Estimate for the Scale-Sensitive Sample Covering Number Array for the specified Cover Size
- *
- * @param gvvi The Validated Instance Vector Sequence
- * @param dblCover The Size of the Cover Array
- *
- * @return The Scale-Sensitive Sample Covering Number Array for the specified Cover Size
- */
- public double[] sampleCoveringNumber (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
- final double dblCover)
- {
- int iDimension = outputMetricVectorSpace().dimension();
- double[] adblCover = new double[iDimension];
- for (int i = 0; i < iDimension; ++i)
- adblCover[i] = dblCover;
- return sampleCoveringNumber (gvvi, adblCover);
- }
- /**
- * Estimate for the Scale-Sensitive Sample Supremum Covering Number for the specified Cover Size
- *
- * @param gvvi The Validated Instance Vector Sequence
- * @param adblCover The Size of the Cover Array
- *
- * @return The Scale-Sensitive Sample Supremum Covering Number for the specified Cover Size
- */
- public double[] sampleSupremumCoveringNumber (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
- final double[] adblCover)
- {
- if (null == _aNormedRxToNormedRd || null == adblCover) return null;
- int iFunctionSpaceSize = _aNormedRxToNormedRd.length;
- if (iFunctionSpaceSize != adblCover.length) return null;
- double[] adblSampleSupremumCoveringNumber = _aNormedRxToNormedRd[0].sampleSupremumCoveringNumber
- (gvvi, adblCover[0]);
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblSampleSupremumCoveringNumber)) return null;
- for (int i = 1; i < iFunctionSpaceSize; ++i) {
- double[] adblFunctionSampleSupremumCoveringNumber =
- _aNormedRxToNormedRd[i].sampleSupremumCoveringNumber (gvvi, adblCover[i]);
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblFunctionSampleSupremumCoveringNumber))
- return null;
- int iDimension = adblFunctionSampleSupremumCoveringNumber.length;
- for (int j = 0; j < iDimension; ++j) {
- if (adblSampleSupremumCoveringNumber[j] < adblFunctionSampleSupremumCoveringNumber[j])
- adblSampleSupremumCoveringNumber[j] = adblFunctionSampleSupremumCoveringNumber[j];
- }
- }
- return adblSampleSupremumCoveringNumber;
- }
- /**
- * Estimate for the Scale-Sensitive Sample Supremum Covering Number for the specified Cover Size
- *
- * @param gvvi The Validated Instance Vector Sequence
- * @param dblCover The Cover
- *
- * @return The Scale-Sensitive Sample Supremum Covering Number for the specified Cover Size
- */
- public double[] sampleSupremumCoveringNumber (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
- final double dblCover)
- {
- int iDimension = outputMetricVectorSpace().dimension();
- double[] adblCover = new double[iDimension];
- for (int i = 0; i < iDimension; ++i)
- adblCover[i] = dblCover;
- return sampleSupremumCoveringNumber (gvvi, adblCover);
- }
- /**
- * Compute the Population R^d Metric Norm
- *
- * @return The Population R^d Metric Norm
- */
- public double[] populationRdMetricNorm()
- {
- if (null == _aNormedRxToNormedRd) return null;
- int iNumFunction = _aNormedRxToNormedRd.length;
- double[] adblPopulationRdMetricNorm = _aNormedRxToNormedRd[0].populationMetricNorm();
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblPopulationRdMetricNorm)) return null;
- for (int i = 1; i < iNumFunction; ++i) {
- double[] adblPopulationMetricNorm = _aNormedRxToNormedRd[i].populationMetricNorm();
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblPopulationMetricNorm)) return null;
- int iDimension = adblPopulationMetricNorm.length;
- for (int j = 0; j < iDimension; ++j) {
- if (adblPopulationRdMetricNorm[j] < adblPopulationMetricNorm[j])
- adblPopulationRdMetricNorm[j] = adblPopulationMetricNorm[j];
- }
- }
- return adblPopulationRdMetricNorm;
- }
- /**
- * Compute the Population R^d Supremum Norm
- *
- * @return The Population R^d Supremum Norm
- */
- public double[] populationRdSupremumNorm()
- {
- if (null == _aNormedRxToNormedRd) return null;
- int iNumFunction = _aNormedRxToNormedRd.length;
- double[] adblPopulationRdSupremumNorm = _aNormedRxToNormedRd[0].populationESS();
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblPopulationRdSupremumNorm)) return null;
- for (int i = 1; i < iNumFunction; ++i) {
- double[] adblPopulationSupremumNorm = _aNormedRxToNormedRd[i].populationESS();
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblPopulationSupremumNorm)) return null;
- int iDimension = adblPopulationSupremumNorm.length;
- for (int j = 0; j < iDimension; ++j) {
- if (adblPopulationRdSupremumNorm[j] < adblPopulationSupremumNorm[j])
- adblPopulationRdSupremumNorm[j] = adblPopulationSupremumNorm[j];
- }
- }
- return adblPopulationRdSupremumNorm;
- }
- /**
- * Compute the Sample R^d Metric Norm
- *
- * @param gvvi The Validated Vector Space Instance
- *
- * @return The Sample R^d Metric Norm
- */
- public double[] sampleRdMetricNorm (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
- {
- if (null == _aNormedRxToNormedRd) return null;
- int iNumFunction = _aNormedRxToNormedRd.length;
- double[] adblSampleRdMetricNorm = _aNormedRxToNormedRd[0].sampleMetricNorm (gvvi);
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblSampleRdMetricNorm)) return null;
- for (int i = 1; i < iNumFunction; ++i) {
- double[] adblSampleMetricNorm = _aNormedRxToNormedRd[i].sampleMetricNorm (gvvi);
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblSampleMetricNorm)) return null;
- int iDimension = adblSampleMetricNorm.length;
- for (int j = 0; j < iDimension; ++j) {
- if (adblSampleRdMetricNorm[j] < adblSampleMetricNorm[j])
- adblSampleRdMetricNorm[j] = adblSampleMetricNorm[j];
- }
- }
- return adblSampleRdMetricNorm;
- }
- /**
- * Compute the Sample R^d Supremum Norm
- *
- * @param gvvi The Validated Vector Space Instance
- *
- * @return The Sample R^d Supremum Norm
- */
- public double[] sampleRdSupremumNorm (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
- {
- if (null == _aNormedRxToNormedRd) return null;
- int iNumFunction = _aNormedRxToNormedRd.length;
- double[] adblSampleRdSupremumNorm = _aNormedRxToNormedRd[0].sampleSupremumNorm (gvvi);
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblSampleRdSupremumNorm)) return null;
- for (int i = 1; i < iNumFunction; ++i) {
- double[] adblSampleSupremumNorm = _aNormedRxToNormedRd[i].sampleSupremumNorm (gvvi);
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblSampleSupremumNorm)) return null;
- int iDimension = adblSampleSupremumNorm.length;
- for (int j = 0; j < iDimension; ++j) {
- if (adblSampleRdSupremumNorm[j] < adblSampleSupremumNorm[j])
- adblSampleRdSupremumNorm[j] = adblSampleSupremumNorm[j];
- }
- }
- return adblSampleRdSupremumNorm;
- }
- @Override public double operatorPopulationMetricNorm()
- throws java.lang.Exception
- {
- double[] adblPopulationMetricNorm = populationRdMetricNorm();
- if (null == adblPopulationMetricNorm)
- throw new java.lang.Exception
- ("NormedRxToNormedRdFinite::operatorPopulationMetricNorm => Invalid Inputs");
- int iDimension = adblPopulationMetricNorm.length;
- double dblOperatorPopulationMetricNorm = java.lang.Double.NaN;
- if (0 == iDimension)
- throw new java.lang.Exception
- ("NormedRxToNormedRdFinite::operatorPopulationMetricNorm => Invalid Inputs");
- for (int j = 0; j < iDimension; ++j) {
- if (0 == j)
- dblOperatorPopulationMetricNorm = adblPopulationMetricNorm[j];
- else {
- if (dblOperatorPopulationMetricNorm < adblPopulationMetricNorm[j])
- dblOperatorPopulationMetricNorm = adblPopulationMetricNorm[j];
- }
- }
- return dblOperatorPopulationMetricNorm;
- }
- @Override public double operatorPopulationSupremumNorm()
- throws java.lang.Exception
- {
- double[] adblPopulationSupremumNorm = populationRdSupremumNorm();
- if (null == adblPopulationSupremumNorm)
- throw new java.lang.Exception
- ("NormedRxToNormedRdFinite::operatorPopulationSupremumNorm => Invalid Inputs");
- int iDimension = adblPopulationSupremumNorm.length;
- double dblOperatorPopulationSupremumNorm = java.lang.Double.NaN;
- if (0 == iDimension)
- throw new java.lang.Exception
- ("NormedRxToNormedRdFinite::operatorPopulationSupremumNorm => Invalid Inputs");
- for (int j = 0; j < iDimension; ++j) {
- if (0 == j)
- dblOperatorPopulationSupremumNorm = adblPopulationSupremumNorm[j];
- else {
- if (dblOperatorPopulationSupremumNorm < adblPopulationSupremumNorm[j])
- dblOperatorPopulationSupremumNorm = adblPopulationSupremumNorm[j];
- }
- }
- return dblOperatorPopulationSupremumNorm;
- }
- @Override public double operatorSampleMetricNorm (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
- throws java.lang.Exception
- {
- double[] adblSampleMetricNorm = sampleRdMetricNorm (gvvi);
- if (null == adblSampleMetricNorm)
- throw new java.lang.Exception
- ("NormedRxToNormedRdFinite::operatorSampleMetricNorm => Invalid Inputs");
- int iDimension = adblSampleMetricNorm.length;
- double dblOperatorSampleMetricNorm = java.lang.Double.NaN;
- if (0 == iDimension)
- throw new java.lang.Exception
- ("NormedRxToNormedRdFinite::operatorSampleMetricNorm => Invalid Inputs");
- for (int j = 0; j < iDimension; ++j) {
- if (0 == j)
- dblOperatorSampleMetricNorm = adblSampleMetricNorm[j];
- else {
- if (dblOperatorSampleMetricNorm < adblSampleMetricNorm[j])
- dblOperatorSampleMetricNorm = adblSampleMetricNorm[j];
- }
- }
- return dblOperatorSampleMetricNorm;
- }
- @Override public double operatorSampleSupremumNorm (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
- throws java.lang.Exception
- {
- double[] adblSampleSupremumNorm = sampleRdSupremumNorm (gvvi);
- if (null == adblSampleSupremumNorm)
- throw new java.lang.Exception
- ("NormedRxToNormedRdFinite::operatorSampleSupremumNorm => Invalid Inputs");
- int iDimension = adblSampleSupremumNorm.length;
- double dblOperatorSampleSupremumNorm = java.lang.Double.NaN;
- if (0 == iDimension)
- throw new java.lang.Exception
- ("NormedRxToNormedRdFinite::operatorSampleSupremumNorm => Invalid Inputs");
- for (int j = 0; j < iDimension; ++j) {
- if (0 == j)
- dblOperatorSampleSupremumNorm = adblSampleSupremumNorm[j];
- else {
- if (dblOperatorSampleSupremumNorm < adblSampleSupremumNorm[j])
- dblOperatorSampleSupremumNorm = adblSampleSupremumNorm[j];
- }
- }
- return dblOperatorSampleSupremumNorm;
- }
- }