NormedRxToNormedRxFinite.java
- package org.drip.spaces.functionclass;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>NormedRxToNormedRxFinite</i> exposes the Space of Functions that are a Transform from the Normed
- * R<sup>x</sup> To Normed R<sup>d</sup> Spaces. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Carl, B. (1985): Inequalities of the Bernstein-Jackson type and the Degree of Compactness of
- * Operators in Banach Spaces <i>Annals of the Fourier Institute</i> <b>35 (3)</b> 79-118
- * </li>
- * <li>
- * Carl, B., and I. Stephani (1990): <i>Entropy, Compactness, and the Approximation of Operators</i>
- * <b>Cambridge University Press</b> Cambridge UK
- * </li>
- * <li>
- * Williamson, R. C., A. J. Smola, and B. Scholkopf (2000): Entropy Numbers of Linear Function
- * Classes, in: <i>Proceedings of the 13th Annual Conference on Computational Learning
- * Theory</i> <b>ACM</b> New York
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/README.md">R<sup>1</sup> and R<sup>d</sup> Vector/Tensor Spaces (Validated and/or Normed), and Function Classes</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/functionclass/README.md">Normed Finite Spaces Function Class</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public abstract class NormedRxToNormedRxFinite {
- private double _dblMaureyConstant = java.lang.Double.NaN;
- protected NormedRxToNormedRxFinite (
- final double dblMaureyConstant)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (_dblMaureyConstant = dblMaureyConstant) || 0. >=
- _dblMaureyConstant)
- throw new java.lang.Exception ("NormedRxToNormedRxFinite ctr => Invalid Inputs");
- }
- /**
- * Retrieve the Input Vector Space
- *
- * @return The Input Vector Space
- */
- public abstract org.drip.spaces.metric.GeneralizedMetricVectorSpace inputMetricVectorSpace();
- /**
- * Retrieve the Output Vector Space
- *
- * @return The Output Vector Space
- */
- public abstract org.drip.spaces.metric.GeneralizedMetricVectorSpace outputMetricVectorSpace();
- /**
- * Compute the Operator Population Metric Norm
- *
- * @return The Operator Population Metric Norm
- *
- * @throws java.lang.Exception Thrown if the Operator Norm cannot be computed
- */
- public abstract double operatorPopulationMetricNorm()
- throws java.lang.Exception;
- /**
- * Compute the Operator Population Supremum Norm
- *
- * @return The Operator Population Supremum Norm
- *
- * @throws java.lang.Exception Thrown if the Operator Population Supremum Norm cannot be computed
- */
- public abstract double operatorPopulationSupremumNorm()
- throws java.lang.Exception;
- /**
- * Compute the Operator Sample Metric Norm
- *
- * @param gvvi The Validated Vector Space Instance
- *
- * @return The Operator Sample Metric Norm
- *
- * @throws java.lang.Exception Thrown if the Operator Norm cannot be computed
- */
- public abstract double operatorSampleMetricNorm (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
- throws java.lang.Exception;
- /**
- * Compute the Operator Sample Supremum Norm
- *
- * @param gvvi The Validated Vector Space Instance
- *
- * @return The Operator Sample Supremum Norm
- *
- * @throws java.lang.Exception Thrown if the Operator Sample Supremum Norm cannot be computed
- */
- public abstract double operatorSampleSupremumNorm (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
- throws java.lang.Exception;
- /**
- * Retrieve the Agnostic Covering Number Upper/Lower Bounds for the Function Class
- *
- * @return The Agnostic Covering Number Upper/Lower Bounds for the Function Class
- */
- public abstract org.drip.spaces.cover.FunctionClassCoveringBounds agnosticCoveringNumberBounds();
- /**
- * Retrieve the Maurey Constant
- *
- * @return The Maurey Constant
- */
- public double maureyConstant()
- {
- return _dblMaureyConstant;
- }
- /**
- * Retrieve the Scale-Sensitive Covering Number Upper/Lower Bounds given the Specified Sample for the
- * Function Class
- *
- * @param gvvi The Validated Instance Vector Sequence
- * @param funcR1ToR1FatShatter The Cover Fat Shattering Coefficient R^1 To R^1
- *
- * @return The Scale-Sensitive Covering Number Upper/Lower Bounds given the Specified Sample for the
- * Function Class
- */
- public org.drip.spaces.cover.FunctionClassCoveringBounds scaleSensitiveCoveringBounds (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
- final org.drip.function.definition.R1ToR1 funcR1ToR1FatShatter)
- {
- if (null == gvvi || null == funcR1ToR1FatShatter) return null;
- int iSampleSize = -1;
- if (gvvi instanceof org.drip.spaces.instance.ValidatedR1) {
- double[] adblInstance = ((org.drip.spaces.instance.ValidatedR1) gvvi).instance();
- if (null == adblInstance) return null;
- iSampleSize = adblInstance.length;
- } else if (gvvi instanceof org.drip.spaces.instance.ValidatedRd) {
- double[][] aadblInstance = ((org.drip.spaces.instance.ValidatedRd) gvvi).instance();
- if (null == aadblInstance) return null;
- iSampleSize = aadblInstance.length;
- }
- try {
- return new org.drip.spaces.cover.ScaleSensitiveCoveringBounds (funcR1ToR1FatShatter,
- iSampleSize);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Output Dimension
- *
- * @return The Output Dimension
- *
- * @throws java.lang.Exception Thrown if the Output Dimension is Invalid
- */
- public int outputDimension()
- throws java.lang.Exception
- {
- org.drip.spaces.metric.GeneralizedMetricVectorSpace gmvsOutput = outputMetricVectorSpace();
- if (!(gmvsOutput instanceof org.drip.spaces.metric.R1Continuous) && !(gmvsOutput instanceof
- org.drip.spaces.metric.RdContinuousBanach))
- throw new java.lang.Exception ("NormedRxToNormedRxFinite::dimension => Invalid Inputs");
- return gmvsOutput instanceof org.drip.spaces.metric.R1Continuous ? 1 :
- ((org.drip.spaces.metric.RdContinuousBanach) gmvsOutput).dimension();
- }
- /**
- * Compute the Maurey Covering Number Upper Bounds for Operator Population Metric Norm
- *
- * @return The Maurey Operator Covering Number Upper Bounds Instance Corresponding to the Operator
- * Population Metric Norm
- */
- public org.drip.spaces.cover.MaureyOperatorCoveringBounds populationMetricCoveringBounds()
- {
- try {
- return new org.drip.spaces.cover.MaureyOperatorCoveringBounds (_dblMaureyConstant,
- outputDimension(), operatorPopulationMetricNorm());
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Maurey Covering Number Upper Bounds for Operator Population Supremum Norm
- *
- * @return The Maurey Operator Covering Number Upper Bounds Instance Corresponding to the Operator
- * Population Supremum Norm
- */
- public org.drip.spaces.cover.MaureyOperatorCoveringBounds populationSupremumCoveringBounds()
- {
- try {
- return new org.drip.spaces.cover.MaureyOperatorCoveringBounds (_dblMaureyConstant,
- outputDimension(), operatorPopulationSupremumNorm());
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Maurey Covering Number Upper Bounds for Operator Sample Metric Norm
- *
- * @param gvvi The Validated Vector Space Instance
- *
- * @return The Maurey Operator Covering Number Upper Bounds Instance Corresponding to the Operator Sample
- * Metric Norm
- */
- public org.drip.spaces.cover.MaureyOperatorCoveringBounds sampleMetricCoveringBounds (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
- {
- try {
- return new org.drip.spaces.cover.MaureyOperatorCoveringBounds (_dblMaureyConstant,
- outputDimension(), operatorSampleMetricNorm (gvvi));
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Compute the Maurey Covering Number Upper Bounds for Operator Sample Supremum Norm
- *
- * @param gvvi The Validated Vector Space Instance
- *
- * @return The Maurey Operator Covering Number Upper Bounds Instance Corresponding to the Operator Sample
- * Supremum Norm
- */
- public org.drip.spaces.cover.MaureyOperatorCoveringBounds sampleSupremumCoveringBounds (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi)
- {
- try {
- return new org.drip.spaces.cover.MaureyOperatorCoveringBounds (_dblMaureyConstant,
- outputDimension(), operatorSampleSupremumNorm (gvvi));
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- }