RdCombinatorialBanach.java

  1. package org.drip.spaces.metric;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  12.  *
  13.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  14.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  15.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  16.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  17.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  18.  *      and computational support.
  19.  *  
  20.  *      https://lakshmidrip.github.io/DROP/
  21.  *  
  22.  *  DROP is composed of three modules:
  23.  *  
  24.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  25.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  26.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  27.  *
  28.  *  DROP Product Core implements libraries for the following:
  29.  *  - Fixed Income Analytics
  30.  *  - Loan Analytics
  31.  *  - Transaction Cost Analytics
  32.  *
  33.  *  DROP Portfolio Core implements libraries for the following:
  34.  *  - Asset Allocation Analytics
  35.  *  - Asset Liability Management Analytics
  36.  *  - Capital Estimation Analytics
  37.  *  - Exposure Analytics
  38.  *  - Margin Analytics
  39.  *  - XVA Analytics
  40.  *
  41.  *  DROP Computational Core implements libraries for the following:
  42.  *  - Algorithm Support
  43.  *  - Computation Support
  44.  *  - Function Analysis
  45.  *  - Model Validation
  46.  *  - Numerical Analysis
  47.  *  - Numerical Optimizer
  48.  *  - Spline Builder
  49.  *  - Statistical Learning
  50.  *
  51.  *  Documentation for DROP is Spread Over:
  52.  *
  53.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  54.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  55.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  56.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  57.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  58.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  59.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  60.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  61.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  62.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  63.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  64.  *
  65.  *  Licensed under the Apache License, Version 2.0 (the "License");
  66.  *      you may not use this file except in compliance with the License.
  67.  *  
  68.  *  You may obtain a copy of the License at
  69.  *      http://www.apache.org/licenses/LICENSE-2.0
  70.  *  
  71.  *  Unless required by applicable law or agreed to in writing, software
  72.  *      distributed under the License is distributed on an "AS IS" BASIS,
  73.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  74.  *  
  75.  *  See the License for the specific language governing permissions and
  76.  *      limitations under the License.
  77.  */

  78. /**
  79.  * <i>RdCombinatorialBanach</i> implements the Bounded/Unbounded Combinatorial l<sub>p</sub> R<sup>d</sup>
  80.  * Spaces. The Reference we've used is:
  81.  *
  82.  * <br><br>
  83.  *  <ul>
  84.  *      <li>
  85.  *          Carl, B., and I. Stephani (1990): <i>Entropy, Compactness, and the Approximation of Operators</i>
  86.  *              <b>Cambridge University Press</b> Cambridge UK
  87.  *      </li>
  88.  *  </ul>
  89.  *
  90.  * <br><br>
  91.  *  <ul>
  92.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  93.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
  94.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/README.md">R<sup>1</sup> and R<sup>d</sup> Vector/Tensor Spaces (Validated and/or Normed), and Function Classes</a></li>
  95.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/metric/README.md">Hilbert/Banach Normed Metric Spaces</a></li>
  96.  *  </ul>
  97.  * <br><br>
  98.  *
  99.  * @author Lakshmi Krishnamurthy
  100.  */

  101. public class RdCombinatorialBanach extends org.drip.spaces.tensor.RdCombinatorialVector implements
  102.     org.drip.spaces.metric.RdNormed {
  103.     private int _iPNorm = -1;
  104.     private org.drip.measure.continuous.Rd _distRd = null;

  105.     /**
  106.      * RdCombinatorialBanach Space Constructor
  107.      *
  108.      * @param aR1CV Array of Combinatorial R^1 Vector Spaces
  109.      * @param distRd The R^d Borel Sigma Measure
  110.      * @param iPNorm The p-norm of the Space
  111.      *
  112.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  113.      */

  114.     public RdCombinatorialBanach (
  115.         final org.drip.spaces.tensor.R1CombinatorialVector[] aR1CV,
  116.         final org.drip.measure.continuous.Rd distRd,
  117.         final int iPNorm)
  118.         throws java.lang.Exception
  119.     {
  120.         super (aR1CV);

  121.         if (0 > (_iPNorm = iPNorm))
  122.             throw new java.lang.Exception ("RdCombinatorialBanach Constructor: Invalid p-norm");

  123.         _distRd = distRd;
  124.     }

  125.     @Override public int pNorm()
  126.     {
  127.         return _iPNorm;
  128.     }

  129.     @Override public org.drip.measure.continuous.Rd borelSigmaMeasure()
  130.     {
  131.         return _distRd;
  132.     }

  133.     @Override public double sampleSupremumNorm (
  134.         final double[] adblX)
  135.         throws java.lang.Exception
  136.     {
  137.         if (!validateInstance (adblX))
  138.             throw new java.lang.Exception ("RdCombinatorialBanach::sampleSupremumNorm => Invalid Inputs");

  139.         int iDimension = adblX.length;

  140.         double dblNorm = java.lang.Math.abs (adblX[0]);

  141.         for (int i = 1; i < iDimension; ++i) {
  142.             double dblAbsoluteX = java.lang.Math.abs (adblX[i]);

  143.             dblNorm = dblNorm > dblAbsoluteX ? dblNorm : dblAbsoluteX;
  144.         }

  145.         return dblNorm;
  146.     }

  147.     @Override public double sampleMetricNorm (
  148.         final double[] adblX)
  149.         throws java.lang.Exception
  150.     {
  151.         if (!validateInstance (adblX))
  152.             throw new java.lang.Exception ("RdCombinatorialBanach::sampleMetricNorm => Invalid Inputs");

  153.         if (java.lang.Integer.MAX_VALUE == _iPNorm) return sampleSupremumNorm (adblX);

  154.         double dblNorm = 0.;
  155.         int iDimension = adblX.length;

  156.         for (int i = 0; i < iDimension; ++i)
  157.             dblNorm += java.lang.Math.pow (java.lang.Math.abs (adblX[i]), _iPNorm);

  158.         return java.lang.Math.pow (dblNorm, 1. / _iPNorm);
  159.     }

  160.     @Override public double[] populationMode()
  161.     {
  162.         if (null == _distRd) return null;

  163.         org.drip.spaces.iterator.RdSpanningCombinatorialIterator crmi = iterator();

  164.         double[] adblVariate = crmi.cursorVariates();

  165.         int iDimension = adblVariate.length;
  166.         double dblModeProbabilityDensity = 0.;
  167.         double[] adblModeVariate = new double[iDimension];
  168.         double dblProbabilityDensity = java.lang.Double.NaN;

  169.         while (null != adblVariate) {
  170.             try {
  171.                 dblProbabilityDensity = _distRd.density (adblVariate);
  172.             } catch (java.lang.Exception e) {
  173.                 e.printStackTrace();

  174.                 return null;
  175.             }

  176.             if (dblProbabilityDensity > dblModeProbabilityDensity) {
  177.                 for (int i = 0; i < iDimension; ++i)
  178.                     adblModeVariate[i] = adblVariate[i];

  179.                 dblModeProbabilityDensity = dblProbabilityDensity;
  180.             }

  181.             adblVariate = crmi.nextVariates();
  182.         }

  183.         return adblModeVariate;
  184.     }

  185.     @Override public double populationSupremumNorm()
  186.         throws java.lang.Exception
  187.     {
  188.         if (null == _distRd)
  189.             throw new java.lang.Exception
  190.                 ("RdCombinatorialBanach::populationSupremumNorm => Invalid Inputs");

  191.         return sampleSupremumNorm (populationMode());
  192.     }

  193.     @Override public double populationMetricNorm()
  194.         throws java.lang.Exception
  195.     {
  196.         if (java.lang.Integer.MAX_VALUE == _iPNorm) return sampleSupremumNorm (populationMode());

  197.         if (null == _distRd)
  198.             throw new java.lang.Exception
  199.                 ("RdCombinatorialBanach::populationMetricNorm => No Multivariate Distribution");

  200.         org.drip.spaces.iterator.RdSpanningCombinatorialIterator crmi = iterator();

  201.         double[] adblVariate = crmi.cursorVariates();

  202.         double dblNormalizer = 0.;
  203.         double dblPopulationMetricNorm  = 0.;
  204.         int iDimension = adblVariate.length;

  205.         while (null != adblVariate) {
  206.             double dblProbabilityDensity = _distRd.density (adblVariate);

  207.             dblNormalizer += dblProbabilityDensity;

  208.             for (int i = 0; i < iDimension; ++i)
  209.                 dblPopulationMetricNorm += dblProbabilityDensity * java.lang.Math.pow (java.lang.Math.abs
  210.                     (adblVariate[i]), _iPNorm);

  211.             adblVariate = crmi.nextVariates();
  212.         }

  213.         return java.lang.Math.pow (dblPopulationMetricNorm / dblNormalizer, 1. / _iPNorm);
  214.     }

  215.     @Override public double borelMeasureSpaceExpectation (
  216.         final org.drip.function.definition.RdToR1 funcRdToR1)
  217.         throws java.lang.Exception
  218.     {
  219.         if (null == _distRd || null == funcRdToR1)
  220.             throw new java.lang.Exception
  221.                 ("RdCombinatorialBanach::borelMeasureSpaceExpectation => Invalid Inputs");

  222.         org.drip.spaces.iterator.RdSpanningCombinatorialIterator crmi = iterator();

  223.         double[] adblVariate = crmi.cursorVariates();

  224.         double dblBorelMeasureSpaceExpectation = 0.;
  225.         double dblNormalizer = 0.;

  226.         while (null != adblVariate) {
  227.             double dblProbabilityDensity = _distRd.density (adblVariate);

  228.             dblNormalizer += dblProbabilityDensity;

  229.             dblBorelMeasureSpaceExpectation += dblProbabilityDensity * funcRdToR1.evaluate (adblVariate);

  230.             adblVariate = crmi.nextVariates();
  231.         }

  232.         return dblBorelMeasureSpaceExpectation / dblNormalizer;
  233.     }
  234. }