NormedRdCombinatorialToR1Continuous.java
- package org.drip.spaces.rxtor1;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>NormedRdCombinatorialToR1Continuous</i> implements the f : Validated Normed R<sup>d</sup> Combinatorial
- * To Validated Normed R<sup>1</sup> Continuous Function Spaces. The Reference we've used is:
- *
- * <br><br>
- * <ul>
- * <li>
- * Carl, B., and I. Stephani (1990): <i>Entropy, Compactness, and the Approximation of Operators</i>
- * <b>Cambridge University Press</b> Cambridge UK
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/README.md">R<sup>1</sup> and R<sup>d</sup> Vector/Tensor Spaces (Validated and/or Normed), and Function Classes</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/rxtor1/README.md">R<sup>x</sup> To R<sup>1</sup> Normed Function Spaces</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class NormedRdCombinatorialToR1Continuous extends org.drip.spaces.rxtor1.NormedRdToNormedR1 {
- /**
- * NormedRdCombinatorialToR1Continuous Function Space Constructor
- *
- * @param rdCombinatorialInput The Combinatorial R^d Input Metric Vector Space
- * @param r1ContinuousOutput The Continuous R^1 Output Metric Vector Space
- * @param funcRdToR1 The R^d To R^1 Function
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public NormedRdCombinatorialToR1Continuous (
- final org.drip.spaces.metric.RdCombinatorialBanach rdCombinatorialInput,
- final org.drip.spaces.metric.R1Continuous r1ContinuousOutput,
- final org.drip.function.definition.RdToR1 funcRdToR1)
- throws java.lang.Exception
- {
- super (rdCombinatorialInput, r1ContinuousOutput, funcRdToR1);
- }
- @Override public double populationMetricNorm()
- throws java.lang.Exception
- {
- int iPNorm = outputMetricVectorSpace().pNorm();
- if (java.lang.Integer.MAX_VALUE == iPNorm) return populationSupremumMetricNorm();
- org.drip.spaces.metric.RdCombinatorialBanach rdCombinatorialInput =
- (org.drip.spaces.metric.RdCombinatorialBanach) inputMetricVectorSpace();
- org.drip.measure.continuous.Rd distRd = rdCombinatorialInput.borelSigmaMeasure();
- org.drip.function.definition.RdToR1 funcRdToR1 = function();
- if (null == distRd || null == funcRdToR1)
- throw new java.lang.Exception
- ("NormedRdCombinatorialToR1Continuous::populationMetricNorm => No Multivariate Distribution/Function");
- org.drip.spaces.iterator.RdSpanningCombinatorialIterator ciRd = rdCombinatorialInput.iterator();
- double[] adblVariate = ciRd.cursorVariates();
- double dblPopulationMetricNorm = 0.;
- double dblNormalizer = 0.;
- while (null != adblVariate) {
- double dblProbabilityDensity = distRd.density (adblVariate);
- dblNormalizer += dblProbabilityDensity;
- dblPopulationMetricNorm += dblProbabilityDensity * java.lang.Math.pow (java.lang.Math.abs
- (funcRdToR1.evaluate (adblVariate)), iPNorm);
- adblVariate = ciRd.nextVariates();
- }
- return java.lang.Math.pow (dblPopulationMetricNorm / dblNormalizer, 1. / iPNorm);
- }
- }