NormedR1ContinuousToRdContinuous.java
- package org.drip.spaces.rxtord;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>NormedR1ContinuousToRdContinuous</i> implements the f : Validated Normed R<sup>1</sup> Continuous To
- * Validated Normed R<sup>d</sup> Continuous Function Spaces. The Reference we've used is:
- *
- * <br><br>
- * <ul>
- * <li>
- * Carl, B., and I. Stephani (1990): <i>Entropy, Compactness, and the Approximation of Operators</i>
- * <b>Cambridge University Press</b> Cambridge UK
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/README.md">R<sup>1</sup> and R<sup>d</sup> Vector/Tensor Spaces (Validated and/or Normed), and Function Classes</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/rxtord/README.md">R<sup>x</sup> To R<sup>d</sup> Normed Function Spaces</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class NormedR1ContinuousToRdContinuous extends org.drip.spaces.rxtord.NormedR1ToNormedRd {
- /**
- * NormedR1ContinuousToRdContinuous Function Space Constructor
- *
- * @param r1ContinuousInput The R^1 Input Metric Vector Space
- * @param rdContinuousOutput The R^d Output Metric Vector Space
- * @param funcR1ToRd The R1ToRd Function
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public NormedR1ContinuousToRdContinuous (
- final org.drip.spaces.metric.R1Continuous r1ContinuousInput,
- final org.drip.spaces.metric.RdContinuousBanach rdContinuousOutput,
- final org.drip.function.definition.R1ToRd funcR1ToRd)
- throws java.lang.Exception
- {
- super (r1ContinuousInput, rdContinuousOutput, funcR1ToRd);
- }
- @Override public double[] populationMetricNorm()
- {
- final int iPNorm = outputMetricVectorSpace().pNorm();
- if (java.lang.Integer.MAX_VALUE == iPNorm) return populationSupremumNorm();
- org.drip.spaces.metric.R1Combinatorial r1ContinuousInput = (org.drip.spaces.metric.R1Combinatorial)
- inputMetricVectorSpace();
- final org.drip.measure.continuous.R1Univariate distR1 = r1ContinuousInput.borelSigmaMeasure();
- final org.drip.function.definition.R1ToRd funcR1ToRd = function();
- if (null == distR1 || null == funcR1ToRd) return null;
- org.drip.function.definition.R1ToRd funcR1ToRdPointNorm = new org.drip.function.definition.R1ToRd
- (null) {
- @Override public double[] evaluate (
- final double dblX)
- {
- double[] adblNorm = funcR1ToRd.evaluate (dblX);
- if (null == adblNorm) return null;
- int iOutputDimension = adblNorm.length;
- double dblProbabilityDensity = java.lang.Double.NaN;
- if (0 == iOutputDimension) return null;
- try {
- dblProbabilityDensity = distR1.density (dblX);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- for (int j = 0; j < iOutputDimension; ++j)
- adblNorm[j] = dblProbabilityDensity * java.lang.Math.pow (java.lang.Math.abs
- (adblNorm[j]), iPNorm);
- return adblNorm;
- }
- };
- double[] adblPopulationRdMetricNorm = funcR1ToRdPointNorm.integrate (r1ContinuousInput.leftEdge(),
- r1ContinuousInput.rightEdge());
- if (null == adblPopulationRdMetricNorm) return null;
- int iOutputDimension = adblPopulationRdMetricNorm.length;
- if (0 == iOutputDimension) return null;
- for (int i = 0; i < iOutputDimension; ++i)
- adblPopulationRdMetricNorm[i] = java.lang.Math.pow (adblPopulationRdMetricNorm[i], 1. / iPNorm);
- return adblPopulationRdMetricNorm;
- }
- }