NormedRxToNormedRd.java
- package org.drip.spaces.rxtord;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>NormedRxToNormedRd</i> is the Abstract Class that exposes f : Normed R<sup>x</sup> (x .gte. 1) To
- * Normed R<sup>d</sup> Function Space. The Reference we've used is:
- *
- * <br><br>
- * <ul>
- * <li>
- * Carl, B., and I. Stephani (1990): <i>Entropy, Compactness, and the Approximation of Operators</i>
- * <b>Cambridge University Press</b> Cambridge UK
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/README.md">R<sup>1</sup> and R<sup>d</sup> Vector/Tensor Spaces (Validated and/or Normed), and Function Classes</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/rxtord/README.md">R<sup>x</sup> To R<sup>d</sup> Normed Function Spaces</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public abstract class NormedRxToNormedRd {
- /**
- * Retrieve the Input Metric Vector Space
- *
- * @return The Input Metric Vector Space
- */
- public abstract org.drip.spaces.metric.GeneralizedMetricVectorSpace inputMetricVectorSpace();
- /**
- * Retrieve the Output Metric Vector Space
- *
- * @return The Output Metric Vector Space
- */
- public abstract org.drip.spaces.metric.RdNormed outputMetricVectorSpace();
- /**
- * Retrieve the Sample Supremum Norm Array
- *
- * @param gvvi The Validated Vector Space Instance
- *
- * @return The Sample Supremum Norm Array
- */
- public abstract double[] sampleSupremumNorm (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi);
- /**
- * Retrieve the Sample Metric Norm Array
- *
- * @param gvvi The Validated Vector Space Instance
- *
- * @return The Sample Metric Norm Array
- */
- public abstract double[] sampleMetricNorm (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi);
- /**
- * Retrieve the Sample Covering Number Array
- *
- * @param gvvi The Validated Vector Space Instance
- * @param dblCover The Cover
- *
- * @return The Sample Covering Number Array
- */
- public double[] sampleCoveringNumber (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
- final double dblCover)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblCover) || 0. >= dblCover) return null;
- double[] adblSampleMetricNorm = sampleMetricNorm (gvvi);
- if (null == adblSampleMetricNorm) return null;
- int iOutputDimensionality = adblSampleMetricNorm.length;
- double[] adblSampleCoveringNumber = new double[iOutputDimensionality];
- if (0 == iOutputDimensionality) return null;
- double dblCoverBallVolume = java.lang.Math.pow (dblCover, outputMetricVectorSpace().pNorm());
- for (int i = 0; i < iOutputDimensionality; ++i)
- adblSampleCoveringNumber[i] = adblSampleMetricNorm[i] / dblCoverBallVolume;
- return adblSampleCoveringNumber;
- }
- /**
- * Retrieve the Sample Supremum Covering Number Array
- *
- * @param gvvi The Validated Vector Space Instance
- * @param dblCover The Cover
- *
- * @return The Sample Supremum Covering Number Array
- */
- public double[] sampleSupremumCoveringNumber (
- final org.drip.spaces.instance.GeneralizedValidatedVector gvvi,
- final double dblCover)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblCover) || 0. >= dblCover) return null;
- double[] adblSampleSupremumNorm = sampleSupremumNorm (gvvi);
- if (null == adblSampleSupremumNorm) return null;
- int iOutputDimensionality = adblSampleSupremumNorm.length;
- double[] adblSampleSupremumCoveringNumber = new double[iOutputDimensionality];
- if (0 == iOutputDimensionality) return null;
- double dblCoverBallVolume = java.lang.Math.pow (dblCover, outputMetricVectorSpace().pNorm());
- for (int i = 0; i < iOutputDimensionality; ++i)
- adblSampleSupremumCoveringNumber[i] = adblSampleSupremumNorm[i] / dblCoverBallVolume;
- return adblSampleSupremumCoveringNumber;
- }
- /**
- * Retrieve the Population ESS (Essential Spectrum) Array
- *
- * @return The Population ESS (Essential Spectrum) Array
- */
- public abstract double[] populationESS();
- /**
- * Retrieve the Population Metric Norm Array
- *
- * @return The Population Metric Norm Array
- */
- public abstract double[] populationMetricNorm();
- /**
- * Retrieve the Population Supremum Norm Array
- *
- * @return The Population Supremum Norm Array
- */
- public double[] populationSupremumNorm()
- {
- return populationMetricNorm();
- }
- /**
- * Retrieve the Population Covering Number Array
- *
- * @param dblCover The Cover
- *
- * @return The Population Covering Number Array
- */
- public double[] populationCoveringNumber (
- final double dblCover)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblCover) || 0. >= dblCover) return null;
- double[] adblPopulationMetricNorm = populationMetricNorm();
- if (null == adblPopulationMetricNorm) return null;
- int iOutputDimensionality = adblPopulationMetricNorm.length;
- double[] adblPopulationCoveringNumber = new double[iOutputDimensionality];
- if (0 == iOutputDimensionality) return null;
- double dblCoverBallVolume = java.lang.Math.pow (dblCover, outputMetricVectorSpace().pNorm());
- for (int i = 0; i < iOutputDimensionality; ++i)
- adblPopulationCoveringNumber[i] = adblPopulationMetricNorm[i] / dblCoverBallVolume;
- return adblPopulationCoveringNumber;
- }
- /**
- * Retrieve the Population Supremum Covering Number Array
- *
- * @param dblCover The Cover
- *
- * @return The Population Supremum Covering Number Array
- */
- public double[] populationSupremumCoveringNumber (
- final double dblCover)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblCover) || 0. >= dblCover) return null;
- double[] adblPopulationSupremumNorm = populationSupremumNorm();
- if (null == adblPopulationSupremumNorm) return null;
- int iOutputDimensionality = adblPopulationSupremumNorm.length;
- double[] adblPopulationSupremumCoveringNumber = new double[iOutputDimensionality];
- if (0 == iOutputDimensionality) return null;
- double dblCoverBallVolume = java.lang.Math.pow (dblCover, outputMetricVectorSpace().pNorm());
- for (int i = 0; i < iOutputDimensionality; ++i)
- adblPopulationSupremumCoveringNumber[i] = adblPopulationSupremumNorm[i] / dblCoverBallVolume;
- return adblPopulationSupremumCoveringNumber;
- }
- }