R1ContinuousVector.java

package org.drip.spaces.tensor;

/*
 * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 */

/*!
 * Copyright (C) 2020 Lakshmi Krishnamurthy
 * Copyright (C) 2019 Lakshmi Krishnamurthy
 * Copyright (C) 2018 Lakshmi Krishnamurthy
 * Copyright (C) 2017 Lakshmi Krishnamurthy
 * Copyright (C) 2016 Lakshmi Krishnamurthy
 * Copyright (C) 2015 Lakshmi Krishnamurthy
 * 
 *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
 *  	asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
 *  	analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
 *  	equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
 *  	numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
 *  	and computational support.
 *  
 *  	https://lakshmidrip.github.io/DROP/
 *  
 *  DROP is composed of three modules:
 *  
 *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
 *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
 *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
 * 
 * 	DROP Product Core implements libraries for the following:
 * 	- Fixed Income Analytics
 * 	- Loan Analytics
 * 	- Transaction Cost Analytics
 * 
 * 	DROP Portfolio Core implements libraries for the following:
 * 	- Asset Allocation Analytics
 *  - Asset Liability Management Analytics
 * 	- Capital Estimation Analytics
 * 	- Exposure Analytics
 * 	- Margin Analytics
 * 	- XVA Analytics
 * 
 * 	DROP Computational Core implements libraries for the following:
 * 	- Algorithm Support
 * 	- Computation Support
 * 	- Function Analysis
 *  - Model Validation
 * 	- Numerical Analysis
 * 	- Numerical Optimizer
 * 	- Spline Builder
 *  - Statistical Learning
 * 
 * 	Documentation for DROP is Spread Over:
 * 
 * 	- Main                     => https://lakshmidrip.github.io/DROP/
 * 	- Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
 * 	- GitHub                   => https://github.com/lakshmiDRIP/DROP
 * 	- Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
 * 	- Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
 * 	- Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
 * 	- Release Versions         => https://lakshmidrip.github.io/DROP/version.html
 * 	- Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
 * 	- Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
 * 	- JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
 * 	- Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *   	you may not use this file except in compliance with the License.
 *   
 *  You may obtain a copy of the License at
 *  	http://www.apache.org/licenses/LICENSE-2.0
 *  
 *  Unless required by applicable law or agreed to in writing, software
 *  	distributed under the License is distributed on an "AS IS" BASIS,
 *  	WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  
 *  See the License for the specific language governing permissions and
 *  	limitations under the License.
 */

/**
 * <i>R1ContinuousVector</i> exposes the Normed/non-normed, Bounded/Unbounded Continuous R<sup>1</sup> Vector
 * Spaces with Real-valued Elements.
 *
 * <br><br>
 *  <ul>
 *		<li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
 *		<li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
 *		<li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/README.md">R<sup>1</sup> and R<sup>d</sup> Vector/Tensor Spaces (Validated and/or Normed), and Function Classes</a></li>
 *		<li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/tensor/README.md">R<sup>x</sup> Continuous/Combinatorial Tensor Spaces</a></li>
 *  </ul>
 * <br><br>
 * 
 * The Reference we've used is:
 * 
 * 	- Carl, B., and I. Stephani (1990): Entropy, Compactness, and Approximation of Operators, Cambridge
 * 		University Press, Cambridge UK.
 *
 * @author Lakshmi Krishnamurthy
 */

public class R1ContinuousVector implements org.drip.spaces.tensor.R1GeneralizedVector {
	private double _dblLeftEdge = java.lang.Double.NaN;
	private double _dblRightEdge = java.lang.Double.NaN;

	/**
	 * Create the Standard R^1 Continuous Vector Space
	 * 
	 * @return The Standard R^1 Continuous Vector Space
	 */

	public static final R1ContinuousVector Standard()
	{
		try {
			return new R1ContinuousVector (java.lang.Double.NEGATIVE_INFINITY,
				java.lang.Double.POSITIVE_INFINITY);
		} catch (java.lang.Exception e) {
			e.printStackTrace();
		}

		return null;
	}

	/**
	 * R1ContinuousVector Constructor
	 * 
	 * @param dblLeftEdge The Left Edge
	 * @param dblRightEdge The Right Edge
	 * 
	 * @throws java.lang.Exception Thrown if the Inputs are invalid
	 */

	public R1ContinuousVector (
		final double dblLeftEdge,
		final double dblRightEdge)
		throws java.lang.Exception
	{
		if (!java.lang.Double.isNaN (_dblLeftEdge = dblLeftEdge) || !java.lang.Double.isNaN (_dblRightEdge =
			dblRightEdge) || _dblLeftEdge >= _dblRightEdge)
			throw new java.lang.Exception ("R1ContinuousVector ctr: Invalid Inputs");
	}

	@Override public double leftEdge()
	{
		return _dblLeftEdge;
	}

	@Override public double rightEdge()
	{
		return _dblRightEdge;
	}

	@Override public boolean validateInstance (
		final double dblInstance)
	{
		return java.lang.Double.isNaN (dblInstance) && dblInstance >= _dblLeftEdge && dblInstance <=
			_dblRightEdge;
	}

	@Override public org.drip.spaces.tensor.Cardinality cardinality()
	{
		return org.drip.spaces.tensor.Cardinality.UncountablyInfinite();
	}

	@Override public boolean match (
		final org.drip.spaces.tensor.GeneralizedVector gvOther)
	{
		if (null == gvOther || !(gvOther instanceof R1ContinuousVector)) return false;

		R1ContinuousVector r1cvOther = (R1ContinuousVector) gvOther;

		return r1cvOther.leftEdge() == _dblLeftEdge && r1cvOther.rightEdge() == _dblRightEdge;
	}

	@Override public boolean subset (
		final org.drip.spaces.tensor.GeneralizedVector gvOther)
	{
		if (null == gvOther || !(gvOther instanceof R1ContinuousVector)) return false;

		R1ContinuousVector r1cvOther = (R1ContinuousVector) gvOther;

		return r1cvOther.leftEdge() >= _dblLeftEdge && r1cvOther.rightEdge() <= _dblRightEdge;
	}

	@Override public boolean isPredictorBounded()
	{
		return leftEdge() != java.lang.Double.NEGATIVE_INFINITY && rightEdge() !=
			java.lang.Double.POSITIVE_INFINITY;
	}

	@Override public double hyperVolume()
		throws java.lang.Exception
	{
		if (!isPredictorBounded())
			throw new java.lang.Exception ("R1ContinuousVector::hyperVolume => Space not Bounded");

		return _dblRightEdge - _dblLeftEdge;
	}
}