RdAggregate.java

  1. package org.drip.spaces.tensor;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  12.  *
  13.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  14.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  15.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  16.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  17.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  18.  *      and computational support.
  19.  *  
  20.  *      https://lakshmidrip.github.io/DROP/
  21.  *  
  22.  *  DROP is composed of three modules:
  23.  *  
  24.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  25.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  26.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  27.  *
  28.  *  DROP Product Core implements libraries for the following:
  29.  *  - Fixed Income Analytics
  30.  *  - Loan Analytics
  31.  *  - Transaction Cost Analytics
  32.  *
  33.  *  DROP Portfolio Core implements libraries for the following:
  34.  *  - Asset Allocation Analytics
  35.  *  - Asset Liability Management Analytics
  36.  *  - Capital Estimation Analytics
  37.  *  - Exposure Analytics
  38.  *  - Margin Analytics
  39.  *  - XVA Analytics
  40.  *
  41.  *  DROP Computational Core implements libraries for the following:
  42.  *  - Algorithm Support
  43.  *  - Computation Support
  44.  *  - Function Analysis
  45.  *  - Model Validation
  46.  *  - Numerical Analysis
  47.  *  - Numerical Optimizer
  48.  *  - Spline Builder
  49.  *  - Statistical Learning
  50.  *
  51.  *  Documentation for DROP is Spread Over:
  52.  *
  53.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  54.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  55.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  56.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  57.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  58.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  59.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  60.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  61.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  62.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  63.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  64.  *
  65.  *  Licensed under the Apache License, Version 2.0 (the "License");
  66.  *      you may not use this file except in compliance with the License.
  67.  *  
  68.  *  You may obtain a copy of the License at
  69.  *      http://www.apache.org/licenses/LICENSE-2.0
  70.  *  
  71.  *  Unless required by applicable law or agreed to in writing, software
  72.  *      distributed under the License is distributed on an "AS IS" BASIS,
  73.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  74.  *  
  75.  *  See the License for the specific language governing permissions and
  76.  *      limitations under the License.
  77.  */

  78. /**
  79.  * <i>RdAggregate</i> exposes the basic Properties of the R<sup>d</sup> as a Sectional Super-position of
  80.  * R<sup>1</sup> Vector Spaces.
  81.  *
  82.  * <br><br>
  83.  *  <ul>
  84.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  85.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
  86.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/README.md">R<sup>1</sup> and R<sup>d</sup> Vector/Tensor Spaces (Validated and/or Normed), and Function Classes</a></li>
  87.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/tensor/README.md">R<sup>x</sup> Continuous/Combinatorial Tensor Spaces</a></li>
  88.  *  </ul>
  89.  * <br><br>
  90.  *
  91.  * @author Lakshmi Krishnamurthy
  92.  */

  93. public abstract class RdAggregate implements org.drip.spaces.tensor.RdGeneralizedVector {
  94.     private org.drip.spaces.tensor.R1GeneralizedVector[] _aR1GV = null;

  95.     protected RdAggregate (
  96.         final org.drip.spaces.tensor.R1GeneralizedVector[] aR1GV)
  97.         throws java.lang.Exception
  98.     {
  99.         if (null == (_aR1GV = aR1GV)) throw new java.lang.Exception ("RdAggregate ctr: Invalid Inputs");

  100.         int iDimension = _aR1GV.length;

  101.         if (0 == iDimension) throw new java.lang.Exception ("RdAggregate ctr: Invalid Inputs");

  102.         for (int i = 0; i < iDimension; ++i) {
  103.             if (null == _aR1GV[i]) throw new java.lang.Exception ("RdAggregate ctr: Invalid Inputs");
  104.         }
  105.     }

  106.     @Override public int dimension()
  107.     {
  108.         return _aR1GV.length;
  109.     }

  110.     @Override public org.drip.spaces.tensor.R1GeneralizedVector[] vectorSpaces()
  111.     {
  112.         return _aR1GV;
  113.     }

  114.     @Override public boolean validateInstance (
  115.         final double[] adblInstance)
  116.     {
  117.         if (null == adblInstance) return false;

  118.         int iDimension = _aR1GV.length;

  119.         if (adblInstance.length != iDimension) return false;

  120.         for (int i = 0; i < iDimension; ++i) {
  121.             if (!_aR1GV[i].validateInstance (adblInstance[i])) return false;
  122.         }

  123.         return true;
  124.     }

  125.     @Override public boolean match (
  126.         final org.drip.spaces.tensor.GeneralizedVector gvOther)
  127.     {
  128.         if (null == gvOther || !(gvOther instanceof RdAggregate)) return false;

  129.         RdAggregate rdaOther = (RdAggregate) gvOther;

  130.         int iDimensionOther = rdaOther.dimension();

  131.         if (iDimensionOther != dimension()) return false;

  132.         org.drip.spaces.tensor.R1GeneralizedVector[] aR1GVOther = rdaOther.vectorSpaces();

  133.         for (int i = 0; i < iDimensionOther; ++i) {
  134.             if (!aR1GVOther[i].match (_aR1GV[i])) return false;
  135.         }

  136.         return true;
  137.     }

  138.     @Override public boolean subset (
  139.         final org.drip.spaces.tensor.GeneralizedVector gvOther)
  140.     {
  141.         if (null == gvOther || !(gvOther instanceof RdAggregate)) return false;

  142.         int iDimensionOther = _aR1GV.length;
  143.         RdAggregate rdaOther = (RdAggregate) gvOther;

  144.         org.drip.spaces.tensor.R1GeneralizedVector[] aR1GVOther = rdaOther.vectorSpaces();

  145.         for (int i = 0; i < iDimensionOther; ++i) {
  146.             if (!aR1GVOther[i].match (_aR1GV[i])) return false;
  147.         }

  148.         return true;
  149.     }

  150.     @Override public boolean isPredictorBounded()
  151.     {
  152.         int iDimension = _aR1GV.length;

  153.         for (int i = 0; i < iDimension; ++i) {
  154.             if (!_aR1GV[i].isPredictorBounded()) return false;
  155.         }

  156.         return true;
  157.     }
  158. }