RdContinuousVector.java

  1. package org.drip.spaces.tensor;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  12.  *
  13.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  14.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  15.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  16.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  17.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  18.  *      and computational support.
  19.  *  
  20.  *      https://lakshmidrip.github.io/DROP/
  21.  *  
  22.  *  DROP is composed of three modules:
  23.  *  
  24.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  25.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  26.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  27.  *
  28.  *  DROP Product Core implements libraries for the following:
  29.  *  - Fixed Income Analytics
  30.  *  - Loan Analytics
  31.  *  - Transaction Cost Analytics
  32.  *
  33.  *  DROP Portfolio Core implements libraries for the following:
  34.  *  - Asset Allocation Analytics
  35.  *  - Asset Liability Management Analytics
  36.  *  - Capital Estimation Analytics
  37.  *  - Exposure Analytics
  38.  *  - Margin Analytics
  39.  *  - XVA Analytics
  40.  *
  41.  *  DROP Computational Core implements libraries for the following:
  42.  *  - Algorithm Support
  43.  *  - Computation Support
  44.  *  - Function Analysis
  45.  *  - Model Validation
  46.  *  - Numerical Analysis
  47.  *  - Numerical Optimizer
  48.  *  - Spline Builder
  49.  *  - Statistical Learning
  50.  *
  51.  *  Documentation for DROP is Spread Over:
  52.  *
  53.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  54.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  55.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  56.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  57.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  58.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  59.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  60.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  61.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  62.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  63.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  64.  *
  65.  *  Licensed under the Apache License, Version 2.0 (the "License");
  66.  *      you may not use this file except in compliance with the License.
  67.  *  
  68.  *  You may obtain a copy of the License at
  69.  *      http://www.apache.org/licenses/LICENSE-2.0
  70.  *  
  71.  *  Unless required by applicable law or agreed to in writing, software
  72.  *      distributed under the License is distributed on an "AS IS" BASIS,
  73.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  74.  *  
  75.  *  See the License for the specific language governing permissions and
  76.  *      limitations under the License.
  77.  */

  78. /**
  79.  * <i>RdContinuousVector</i> implements the Normed/non-normed, Bounded/Unbounded Continuous R<sup>d</sup>
  80.  * Vector Spaces. The Reference we've used is:
  81.  *
  82.  * <br><br>
  83.  *  <ul>
  84.  *      <li>
  85.  *          Carl, B., and I. Stephani (1990): <i>Entropy, Compactness, and the Approximation of Operators</i>
  86.  *              <b>Cambridge University Press</b> Cambridge UK
  87.  *      </li>
  88.  *  </ul>
  89.  *
  90.  * <br><br>
  91.  *  <ul>
  92.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  93.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/StatisticalLearningLibrary.md">Statistical Learning Library</a></li>
  94.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/README.md">R<sup>1</sup> and R<sup>d</sup> Vector/Tensor Spaces (Validated and/or Normed), and Function Classes</a></li>
  95.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spaces/tensor/README.md">R<sup>x</sup> Continuous/Combinatorial Tensor Spaces</a></li>
  96.  *  </ul>
  97.  * <br><br>
  98.  *
  99.  * @author Lakshmi Krishnamurthy
  100.  */

  101. public class RdContinuousVector extends org.drip.spaces.tensor.RdAggregate {

  102.     /**
  103.      * Construct the RdContinuousVector Instance
  104.      *
  105.      * @param iDimension The Space Dimension
  106.      *
  107.      * @return The RdContinuousVector Instance
  108.      */

  109.     public static final RdContinuousVector Standard (
  110.         final int iDimension)
  111.     {
  112.         try {
  113.             return 0 >= iDimension ? null : new RdContinuousVector (new
  114.                 org.drip.spaces.tensor.R1ContinuousVector[iDimension]);
  115.         } catch (java.lang.Exception e) {
  116.             e.printStackTrace();
  117.         }

  118.         return null;
  119.     }

  120.     /**
  121.      * RdContinuousVector Constructor
  122.      *
  123.      * @param aR1CV Array of the Continuous R^1 Vector Spaces
  124.      *
  125.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  126.      */

  127.     public RdContinuousVector (
  128.         final org.drip.spaces.tensor.R1ContinuousVector[] aR1CV)
  129.         throws java.lang.Exception
  130.     {
  131.         super (aR1CV);
  132.     }

  133.     @Override public double[] leftDimensionEdge()
  134.     {
  135.         org.drip.spaces.tensor.R1GeneralizedVector[] aR1GV = vectorSpaces();

  136.         int iDimension = aR1GV.length;
  137.         double[] adblLeftEdge = new double[iDimension];

  138.         for (int i = 0; i < iDimension; ++i)
  139.             adblLeftEdge[i] = ((org.drip.spaces.tensor.R1ContinuousVector) aR1GV[i]).leftEdge();

  140.         return adblLeftEdge;
  141.     }

  142.     @Override public double[] rightDimensionEdge()
  143.     {
  144.         org.drip.spaces.tensor.R1GeneralizedVector[] aR1GV = vectorSpaces();

  145.         int iDimension = aR1GV.length;
  146.         double[] adblRightEdge = new double[iDimension];

  147.         for (int i = 0; i < iDimension; ++i)
  148.             adblRightEdge[i] = ((org.drip.spaces.tensor.R1ContinuousVector) aR1GV[i]).rightEdge();

  149.         return adblRightEdge;
  150.     }

  151.     @Override public org.drip.spaces.tensor.Cardinality cardinality()
  152.     {
  153.         return org.drip.spaces.tensor.Cardinality.UncountablyInfinite();
  154.     }

  155.     @Override public double leftEdge()
  156.     {
  157.         double[] adblLeftEdge = leftDimensionEdge();

  158.         int iDimension = adblLeftEdge.length;
  159.         double dblLeftEdge = adblLeftEdge[0];

  160.         for (int i = 1; i < iDimension; ++i) {
  161.             if (dblLeftEdge > adblLeftEdge[i]) dblLeftEdge = adblLeftEdge[i];
  162.         }

  163.         return dblLeftEdge;
  164.     }

  165.     @Override public double rightEdge()
  166.     {
  167.         double[] adblRightEdge = rightDimensionEdge();

  168.         int iDimension = adblRightEdge.length;
  169.         double dblRightEdge = adblRightEdge[0];

  170.         for (int i = 1; i < iDimension; ++i) {
  171.             if (dblRightEdge < adblRightEdge[i]) dblRightEdge = adblRightEdge[i];
  172.         }

  173.         return dblRightEdge;
  174.     }

  175.     @Override public double hyperVolume()
  176.         throws java.lang.Exception
  177.     {
  178.         if (!isPredictorBounded())
  179.             throw new java.lang.Exception ("ContinuousVectorRd::hyperVolume => Space not Bounded");

  180.         double[] adblLeftEdge = leftDimensionEdge();

  181.         double dblHyperVolume = 1.;
  182.         int iDimension = adblLeftEdge.length;

  183.         double[] adblRightEdge = rightDimensionEdge();

  184.         for (int i = 0; i < iDimension; ++i)
  185.             dblHyperVolume *= (adblRightEdge[i] - adblLeftEdge[i]);

  186.         return dblHyperVolume;
  187.     }
  188. }