BesselFirstKindEstimator.java

  1. package org.drip.specialfunction.definition;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>BesselFirstKindEstimator</i> exposes the Estimator for the Bessel Function of the First Kind. The
  76.  * References are:
  77.  *
  78.  * <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Abramowitz, M., and I. A. Stegun (2007): <i>Handbook of Mathematics Functions</i> <b>Dover Book
  82.  *              on Mathematics</b>
  83.  *      </li>
  84.  *      <li>
  85.  *          Arfken, G. B., and H. J. Weber (2005): <i>Mathematical Methods for Physicists 6<sup>th</sup>
  86.  *              Edition</i> <b>Harcourt</b> San Diego
  87.  *      </li>
  88.  *      <li>
  89.  *          Temme N. M. (1996): <i>Special Functions: An Introduction to the Classical Functions of
  90.  *              Mathematical Physics 2<sup>nd</sup> Edition</i> <b>Wiley</b> New York
  91.  *      </li>
  92.  *      <li>
  93.  *          Watson, G. N. (1995): <i>A Treatise on the Theory of Bessel Functions</i> <b>Cambridge University
  94.  *              Press</b>
  95.  *      </li>
  96.  *      <li>
  97.  *          Wikipedia (2019): Bessel Function https://en.wikipedia.org/wiki/Bessel_function
  98.  *      </li>
  99.  *  </ul>
  100.  *
  101.  *  <br><br>
  102.  *  <ul>
  103.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  104.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FunctionAnalysisLibrary.md">Function Analysis Library</a></li>
  105.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/README.md">Special Function Implementation Analysis</a></li>
  106.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/definition/README.md">Definition of Special Function Estimators</a></li>
  107.  *  </ul>
  108.  *
  109.  * @author Lakshmi Krishnamurthy
  110.  */

  111. public abstract class BesselFirstKindEstimator implements org.drip.function.definition.R2ToR1
  112. {

  113.     /**
  114.      * Construct the Alpha Positive Integer or Zero Asymptotic Version of BesselFirstKindEstimator
  115.      *
  116.      * @param gammaEstimator Gamma Estimator
  117.      *
  118.      * @return Alpha Positive Integer or Zero Asymptotic Version of BesselFirstKindEstimator
  119.      */

  120.     public static final BesselFirstKindEstimator AlphaPositiveIntegerOrZeroAsymptote (
  121.         final org.drip.function.definition.R1ToR1 gammaEstimator)
  122.     {
  123.         return null == gammaEstimator ? null : new BesselFirstKindEstimator()
  124.         {
  125.             @Override public double bigJ (
  126.                 final double alpha,
  127.                 final double z)
  128.                 throws java.lang.Exception
  129.             {
  130.                 if (!org.drip.numerical.common.NumberUtil.IsInteger (alpha) || 0. > alpha ||
  131.                     !org.drip.numerical.common.NumberUtil.IsValid (z))
  132.                 {
  133.                     throw new java.lang.Exception
  134.                         ("BesselFirstKindEstimator::AlphaPositiveIntegerOrZeroAsymptote => Invalid Inputs");
  135.                 }

  136.                 return java.lang.Math.pow (
  137.                     0.5 * z,
  138.                     alpha
  139.                 ) / gammaEstimator.evaluate (alpha + 1.);
  140.             }
  141.         };
  142.     }

  143.     /**
  144.      * Construct the Alpha Negative Integer Asymptotic Version of BesselFirstKindEstimator
  145.      *
  146.      * @param gammaEstimator Gamma Estimator
  147.      *
  148.      * @return Alpha Negative Integer Asymptotic Version of BesselFirstKindEstimator
  149.      */

  150.     public static final BesselFirstKindEstimator AlphaNegativeIntegerAsymptote (
  151.         final org.drip.function.definition.R1ToR1 gammaEstimator)
  152.     {
  153.         return null == gammaEstimator ? null : new BesselFirstKindEstimator()
  154.         {
  155.             @Override public double bigJ (
  156.                 final double alpha,
  157.                 final double z)
  158.                 throws java.lang.Exception
  159.             {
  160.                 if (!org.drip.numerical.common.NumberUtil.IsNegativeInteger (alpha) ||
  161.                     !org.drip.numerical.common.NumberUtil.IsValid (z))
  162.                 {
  163.                     throw new java.lang.Exception
  164.                         ("BesselFirstKindEstimator::AlphaNegativeIntegerAsymptote => Invalid Inputs");
  165.                 }

  166.                 double negativeAlpha = -1. * alpha;

  167.                 return (0 == negativeAlpha % 2 ? 1. : -1.) * java.lang.Math.pow (
  168.                     0.5 * z,
  169.                     negativeAlpha
  170.                 ) / gammaEstimator.evaluate (negativeAlpha);
  171.             }
  172.         };
  173.     }

  174.     /**
  175.      * Construct the High z Asymptotic Version of BesselFirstKindEstimator
  176.      *
  177.      * @return High z Asymptotic Version of BesselFirstKindEstimator
  178.      */

  179.     public static final BesselFirstKindEstimator HighZAsymptote()
  180.     {
  181.         return new BesselFirstKindEstimator()
  182.         {
  183.             @Override public double bigJ (
  184.                 final double alpha,
  185.                 final double z)
  186.                 throws java.lang.Exception
  187.             {
  188.                 if (!org.drip.numerical.common.NumberUtil.IsValid (alpha) ||
  189.                     !org.drip.numerical.common.NumberUtil.IsValid (z))
  190.                 {
  191.                     throw new java.lang.Exception
  192.                         ("BesselFirstKindEstimator::HighZAsymptote => Invalid Inputs");
  193.                 }

  194.                 return java.lang.Math.sqrt (2. / java.lang.Math.PI / z) * java.lang.Math.cos (
  195.                     z - 0.5 * java.lang.Math.PI * alpha - 0.25 * java.lang.Math.PI
  196.                 );
  197.             }
  198.         };
  199.     }

  200.     /**
  201.      * Construct the Alpha=0 Negative z Asymptotic Version of BesselFirstKindEstimator
  202.      *
  203.      * @return Alpha=0 Negative z Asymptotic Version of BesselFirstKindEstimator
  204.      */

  205.     public static final BesselFirstKindEstimator AlphaZeroNegativeZAsymptote()
  206.     {
  207.         return new BesselFirstKindEstimator()
  208.         {
  209.             @Override public double bigJ (
  210.                 final double alpha,
  211.                 final double z)
  212.                 throws java.lang.Exception
  213.             {
  214.                 if (0. != alpha ||
  215.                     !org.drip.numerical.common.NumberUtil.IsValid (z) || 0. < z)
  216.                 {
  217.                     throw new java.lang.Exception
  218.                         ("BesselFirstKindEstimator::AlphaZeroNegativeZAsymptote => Invalid Inputs");
  219.                 }

  220.                 return java.lang.Math.sqrt (-2. / java.lang.Math.PI / z) * java.lang.Math.cos (
  221.                     z + 0.25 * java.lang.Math.PI
  222.                 );
  223.             }
  224.         };
  225.     }

  226.     public static final BesselFirstKindEstimator AlphaZeroApproximate()
  227.     {
  228.         return new BesselFirstKindEstimator()
  229.         {
  230.             @Override public double bigJ (
  231.                 final double alpha,
  232.                 final double z)
  233.                 throws java.lang.Exception
  234.             {
  235.                 if (0. != alpha ||
  236.                     !org.drip.numerical.common.NumberUtil.IsValid (z))
  237.                 {
  238.                     throw new java.lang.Exception
  239.                         ("BesselFirstKindEstimator::AlphaZeroApproximate => Invalid Inputs");
  240.                 }

  241.                 double oneOver_OnePlus__zOver7_Power20__ = 1. / (
  242.                     1 + java.lang.Math.pow (
  243.                         z / 7.,
  244.                         20.
  245.                     )
  246.                 );

  247.                 double zAbsolute = java.lang.Math.abs (z);

  248.                 double zOver2 = z / 2.;
  249.                 double zSign = 0 == z ? 1. : zAbsolute / z;

  250.                 return oneOver_OnePlus__zOver7_Power20__ * (
  251.                     (1. + java.lang.Math.cos (z)) / 6. + (
  252.                         java.lang.Math.cos (zOver2) + java.lang.Math.cos (java.lang.Math.sqrt (3.) * zOver2)
  253.                     ) / 3.
  254.                 ) +
  255.                 (1. - oneOver_OnePlus__zOver7_Power20__) * java.lang.Math.sqrt (
  256.                     2. / java.lang.Math.PI / zAbsolute
  257.                 ) * java.lang.Math.cos (
  258.                     z -  0.25 * java.lang.Math.PI * zSign
  259.                 );
  260.             }
  261.         };
  262.     }

  263.     /**
  264.      * Evaluate Bessel Function First Kind J given Alpha and z
  265.      *
  266.      * @param alpha Alpha
  267.      * @param z Z
  268.      *  
  269.      * @return Bessel Function First Kind J Value
  270.      *
  271.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  272.      */

  273.     public abstract double bigJ (
  274.         final double alpha,
  275.         final double z)
  276.         throws java.lang.Exception;

  277.     @Override public double evaluate (
  278.         final double alpha,
  279.         final double z)
  280.         throws java.lang.Exception
  281.     {
  282.         return bigJ (
  283.             alpha,
  284.             z
  285.         );
  286.     }
  287. }