RegularHypergeometricEstimator.java

  1. package org.drip.specialfunction.definition;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>RegularHypergeometricEstimator</i> exposes the Stubs for estimating the 2F1 Hyper-geometric Function
  76.  * and its Jacobian using the 2F1 Hyper-geometric Function. The References are:
  77.  *
  78.  * <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series <i>SIAM Journal
  82.  *              on Mathematical Analysis</i> <b>13 (2)</b> 295-308
  83.  *      </li>
  84.  *      <li>
  85.  *          Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation <i>Journal of Symbolic
  86.  *              Computation</i> <b>20 (4)</b> 399-417
  87.  *      </li>
  88.  *      <li>
  89.  *          Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the
  90.  *              Sum of a (_2^3)F(a,b;c;z) <i>Journal of Computational and Applied Mathematics</i> <b>72</b>
  91.  *              293-300
  92.  *      </li>
  93.  *      <li>
  94.  *          National Institute of Standards and Technology (2019): Hyper-geometric Function
  95.  *              https://dlmf.nist.gov/15
  96.  *      </li>
  97.  *      <li>
  98.  *          Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
  99.  *      </li>
  100.  *  </ul>
  101.  *
  102.  *  <br><br>
  103.  *  <ul>
  104.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  105.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FunctionAnalysisLibrary.md">Function Analysis Library</a></li>
  106.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/README.md">Special Function Implementation Analysis</a></li>
  107.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/definition/README.md">Definition of Special Function Estimators</a></li>
  108.  *  </ul>
  109.  *
  110.  * @author Lakshmi Krishnamurthy
  111.  */

  112. public abstract class RegularHypergeometricEstimator extends
  113.     org.drip.specialfunction.definition.HypergeometricEstimator
  114. {

  115.     protected RegularHypergeometricEstimator (
  116.         final org.drip.specialfunction.definition.HypergeometricParameters hypergeometricParameters)
  117.         throws java.lang.Exception
  118.     {
  119.         super (hypergeometricParameters);
  120.     }

  121.     @Override public double evaluate (
  122.         final double z)
  123.         throws java.lang.Exception
  124.     {
  125.         return regularHypergeometric (z);
  126.     }

  127.     /**
  128.      * Evaluate Regular Hyper-geometric Function
  129.      *
  130.      * @param z Z
  131.      *  
  132.      * @return Regular Hyper-geometric Value
  133.      *
  134.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  135.      */

  136.     public abstract double regularHypergeometric (
  137.         final double z)
  138.         throws java.lang.Exception;

  139.     /**
  140.      * Albinate (i.e., Clone + Mutate) an Instance of Regular Hyper-geometric Estimator
  141.      *
  142.      * @param hypergeometricParametersAlbinate The Albination Hyper-geometric Parameters
  143.      * @param valueScaler The Estimator Value Scaler
  144.      * @param zTransformer The Z Transformation Function
  145.      *
  146.      * @return Albinated Instance of Regular Hyper-geometric Estimator
  147.      */

  148.     public abstract org.drip.specialfunction.definition.RegularHypergeometricEstimator albinate (
  149.         final org.drip.specialfunction.definition.HypergeometricParameters hypergeometricParametersAlbinate,
  150.         final org.drip.function.definition.R1ToR1 valueScaler,
  151.         final org.drip.function.definition.R1ToR1 zTransformer);

  152.     /**
  153.      * Construct the Kummer24 Euler Transformation on 2F1
  154.      *
  155.      * @return The Kummer24 Euler Transformation on 2F1
  156.      */

  157.     public org.drip.specialfunction.definition.RegularHypergeometricEstimator albinateEuler()
  158.     {
  159.         org.drip.specialfunction.definition.HypergeometricParameters hypergeometricParameters =
  160.             hypergeometricParameters();

  161.         final double a = hypergeometricParameters.a();

  162.         final double b = hypergeometricParameters.b();

  163.         final double c = hypergeometricParameters.c();

  164.         try
  165.         {
  166.             return albinate (
  167.                 new org.drip.specialfunction.definition.HypergeometricParameters (
  168.                     c - a,
  169.                     c - b,
  170.                     c
  171.                 ),
  172.                 new org.drip.function.definition.R1ToR1 (null)
  173.                 {
  174.                     @Override public double evaluate (
  175.                         final double z)
  176.                         throws java.lang.Exception
  177.                     {
  178.                         return java.lang.Math.pow (
  179.                             1. - z,
  180.                             c - a - b
  181.                         );
  182.                     }
  183.                 },
  184.                 null
  185.             );
  186.         }
  187.         catch (java.lang.Exception e)
  188.         {
  189.             e.printStackTrace();
  190.         }

  191.         return null;
  192.     }

  193.     /**
  194.      * Construct the Kummer24 Pfaff First Transformation on 2F1
  195.      *
  196.      * @return The Kummer24 Pfaff First Transformation on 2F1
  197.      */

  198.     public org.drip.specialfunction.definition.RegularHypergeometricEstimator albinatePfaffFirst()
  199.     {
  200.         org.drip.specialfunction.definition.HypergeometricParameters hypergeometricParameters =
  201.             hypergeometricParameters();

  202.         final double a = hypergeometricParameters.a();

  203.         final double c = hypergeometricParameters.c();

  204.         try
  205.         {
  206.             return albinate (
  207.                 new org.drip.specialfunction.definition.HypergeometricParameters (
  208.                     a,
  209.                     c - hypergeometricParameters.b(),
  210.                     c
  211.                 ),
  212.                 new org.drip.function.definition.R1ToR1 (null)
  213.                 {
  214.                     @Override public double evaluate (
  215.                         final double z)
  216.                         throws java.lang.Exception
  217.                     {
  218.                         return java.lang.Math.pow (
  219.                             1. - z,
  220.                             -a
  221.                         );
  222.                     }
  223.                 },
  224.                 new org.drip.function.definition.R1ToR1 (null)
  225.                 {
  226.                     @Override public double evaluate (
  227.                         final double z)
  228.                         throws java.lang.Exception
  229.                     {
  230.                         return z / (z - 1.);
  231.                     }
  232.                 }
  233.             );
  234.         }
  235.         catch (java.lang.Exception e)
  236.         {
  237.             e.printStackTrace();
  238.         }

  239.         return null;
  240.     }

  241.     /**
  242.      * Construct the Kummer24 Pfaff Second Transformation on 2F1
  243.      *
  244.      * @return The Kummer24 Pfaff Second Transformation on 2F1
  245.      */

  246.     public org.drip.specialfunction.definition.RegularHypergeometricEstimator albinatePfaffSecond()
  247.     {
  248.         org.drip.specialfunction.definition.HypergeometricParameters hypergeometricParameters =
  249.             hypergeometricParameters();

  250.         final double b = hypergeometricParameters.b();

  251.         final double c = hypergeometricParameters.c();

  252.         try {
  253.             return albinate (
  254.                 new org.drip.specialfunction.definition.HypergeometricParameters (
  255.                     c - hypergeometricParameters.a(),
  256.                     b,
  257.                     c
  258.                 ),
  259.                 new org.drip.function.definition.R1ToR1 (null)
  260.                 {
  261.                     @Override public double evaluate (
  262.                         final double z)
  263.                         throws java.lang.Exception
  264.                     {
  265.                         return java.lang.Math.pow (
  266.                             1. - z,
  267.                             -b
  268.                         );
  269.                     }
  270.                 },
  271.                 new org.drip.function.definition.R1ToR1 (null)
  272.                 {
  273.                     @Override public double evaluate (
  274.                         final double z)
  275.                         throws java.lang.Exception
  276.                     {
  277.                         return z / (z - 1.);
  278.                     }
  279.                 }
  280.             );
  281.         }
  282.         catch (java.lang.Exception e)
  283.         {
  284.             e.printStackTrace();
  285.         }

  286.         return null;
  287.     }
  288. }