IntegralEstimator.java
- package org.drip.specialfunction.digamma;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>IntegralEstimator</i> demonstrates the Estimation of the Digamma Function using the Integral
- * Representations. The References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Abramowitz, M., and I. A. Stegun (2007): Handbook of Mathematics Functions <b>Dover Book on
- * Mathematics</b>
- * </li>
- * <li>
- * Blagouchine, I. V. (2018): Three Notes on Ser's and Hasse's Representations for the
- * Zeta-Functions https://arxiv.org/abs/1606.02044 <b>arXiv</b>
- * </li>
- * <li>
- * Mezo, I., and M. E. Hoffman (2017): Zeros of the Digamma Function and its Barnes G-function
- * Analogue <i>Integral Transforms and Special Functions</i> <b>28 (28)</b> 846-858
- * </li>
- * <li>
- * Whitaker, E. T., and G. N. Watson (1996): <i>A Course on Modern Analysis</i> <b>Cambridge
- * University Press</b> New York
- * </li>
- * <li>
- * Wikipedia (2019): Digamma Function https://en.wikipedia.org/wiki/Digamma_function
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FunctionAnalysisLibrary.md">Function Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/README.md">Special Function Implementation Analysis</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/digamma/README.md">Estimation Techniques for Digamma Function</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class IntegralEstimator
- {
- /**
- * Generate the Gaussian Integral Digamma Estimator
- *
- * @return The Gaussian Integral Digamma Estimator
- */
- public static final org.drip.numerical.estimation.R1ToR1IntegrandEstimator Gauss()
- {
- try
- {
- return new org.drip.numerical.estimation.R1ToR1IntegrandEstimator (
- null,
- new org.drip.numerical.estimation.R1ToR1IntegrandGenerator()
- {
- @Override public org.drip.numerical.estimation.R1ToR1Estimator integrand (
- final double z)
- {
- try
- {
- return new org.drip.numerical.estimation.R1ToR1Estimator (null)
- {
- @Override public double evaluate (
- final double t)
- throws java.lang.Exception
- {
- double ePowerMinusT = java.lang.Math.exp (-t);
- return 0. == t || java.lang.Double.isInfinite (t) ? 0. :
- (ePowerMinusT / t) - (java.lang.Math.exp (-z * t) /
- (1. - ePowerMinusT));
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- },
- org.drip.numerical.estimation.R1ToR1IntegrandEstimator.INTEGRAND_LIMITS_SETTING_ZERO_INFINITY,
- 1.,
- new org.drip.numerical.estimation.R1ToR1Estimator (null)
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- return 0.;
- }
- }
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Gauss-Euler-Mascheroni Integral Digamma Estimator
- *
- * @return The Gauss-Euler-Mascheroni Integral Digamma Estimator
- */
- public static final org.drip.numerical.estimation.R1ToR1IntegrandEstimator GaussEulerMascheroni()
- {
- try
- {
- return new org.drip.numerical.estimation.R1ToR1IntegrandEstimator (
- null,
- new org.drip.numerical.estimation.R1ToR1IntegrandGenerator()
- {
- @Override public org.drip.numerical.estimation.R1ToR1Estimator integrand (
- final double z)
- {
- try
- {
- return new org.drip.numerical.estimation.R1ToR1Estimator (null)
- {
- @Override public double evaluate (
- final double t)
- throws java.lang.Exception
- {
- return 0. == t ? 1. -
- org.drip.specialfunction.gamma.Definitions.EULER_MASCHERONI : 1. == t
- ? -org.drip.specialfunction.gamma.Definitions.EULER_MASCHERONI : (
- 1. - java.lang.Math.pow (
- t,
- z - 1.
- )
- ) / (1. - t);
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- },
- org.drip.numerical.estimation.R1ToR1IntegrandEstimator.INTEGRAND_LIMITS_SETTING_ZERO_ONE,
- 1.,
- new org.drip.numerical.estimation.R1ToR1Estimator (null)
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- return -org.drip.specialfunction.gamma.Definitions.EULER_MASCHERONI;
- }
- }
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Dirichlet Integral Digamma Estimator
- *
- * @return The Dirichlet Integral Digamma Estimator
- */
- public static final org.drip.numerical.estimation.R1ToR1IntegrandEstimator Dirichlet()
- {
- try
- {
- return new org.drip.numerical.estimation.R1ToR1IntegrandEstimator (
- null,
- new org.drip.numerical.estimation.R1ToR1IntegrandGenerator()
- {
- @Override public org.drip.numerical.estimation.R1ToR1Estimator integrand (
- final double z)
- {
- try
- {
- return new org.drip.numerical.estimation.R1ToR1Estimator (null)
- {
- @Override public double evaluate (
- final double t)
- throws java.lang.Exception
- {
- return 0. == t || java.lang.Double.isInfinite (t) ? 0. : (
- java.lang.Math.exp (-t) - java.lang.Math.pow (
- 1. + t,
- -z
- )
- ) / t;
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- },
- org.drip.numerical.estimation.R1ToR1IntegrandEstimator.INTEGRAND_LIMITS_SETTING_ZERO_INFINITY,
- 1.,
- new org.drip.numerical.estimation.R1ToR1Estimator (null)
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- return 0.;
- }
- }
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Binet Second Integral Digamma Estimator
- *
- * @return The Binet Second Integral Digamma Estimator
- */
- public static final org.drip.numerical.estimation.R1ToR1IntegrandEstimator BinetSecond()
- {
- try
- {
- return new org.drip.numerical.estimation.R1ToR1IntegrandEstimator (
- null,
- new org.drip.numerical.estimation.R1ToR1IntegrandGenerator()
- {
- @Override public org.drip.numerical.estimation.R1ToR1Estimator integrand (
- final double z)
- {
- try
- {
- return new org.drip.numerical.estimation.R1ToR1Estimator (null)
- {
- @Override public double evaluate (
- final double t)
- throws java.lang.Exception
- {
- return 0. == t || java.lang.Double.isInfinite (t) ? 0. : t / (
- (t * t + z * z) *
- (java.lang.Math.exp (2. * java.lang.Math.PI * t) - 1.)
- );
- }
- };
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- },
- org.drip.numerical.estimation.R1ToR1IntegrandEstimator.INTEGRAND_LIMITS_SETTING_ZERO_INFINITY,
- -2.,
- new org.drip.numerical.estimation.R1ToR1Estimator (null)
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- return 0. == z ? 0. : java.lang.Math.log (z) - 0.5 / z;
- }
- }
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- }