StirlingSeries.java

  1. package org.drip.specialfunction.gamma;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>StirlingSeries</i> implements the Stirling's Series Approximation of the Gamma Functions. The
  76.  * References are:
  77.  * <br><br>
  78.  *  <ul>
  79.  *      <li>
  80.  *          Mortici, C. (2011): Improved Asymptotic Formulas for the Gamma Function <i>Computers and
  81.  *              Mathematics with Applications</i> <b>61 (11)</b> 3364-3369
  82.  *      </li>
  83.  *      <li>
  84.  *          National Institute of Standards and Technology (2018): NIST Digital Library of Mathematical
  85.  *              Functions https://dlmf.nist.gov/5.11
  86.  *      </li>
  87.  *      <li>
  88.  *          Nemes, G. (2010): On the Coefficients of the Asymptotic Expansion of n!
  89.  *              https://arxiv.org/abs/1003.2907 <b>arXiv</b>
  90.  *      </li>
  91.  *      <li>
  92.  *          Toth V. T. (2016): Programmable Calculators – The Gamma Function
  93.  *              http://www.rskey.org/CMS/index.php/the-library/11
  94.  *      </li>
  95.  *      <li>
  96.  *          Wikipedia (2019): Stirling's Approximation
  97.  *              https://en.wikipedia.org/wiki/Stirling%27s_approximation
  98.  *      </li>
  99.  *  </ul>
  100.  *
  101.  *  <br><br>
  102.  *  <ul>
  103.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  104.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FunctionAnalysisLibrary.md">Function Analysis Library</a></li>
  105.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/README.md">Special Function Implementation Analysis</a></li>
  106.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/gamma/README.md">Analytic/Series/Integral Gamma Estimators</a></li>
  107.  *  </ul>
  108.  *
  109.  * @author Lakshmi Krishnamurthy
  110.  */

  111. public class StirlingSeries extends org.drip.numerical.estimation.R1ToR1Estimator
  112. {

  113.     /**
  114.      * StirlingSeries Constructor
  115.      *
  116.      * @param dc The Derivative Control
  117.      */

  118.     public StirlingSeries (
  119.         final org.drip.numerical.differentiation.DerivativeControl dc)
  120.     {
  121.         super (dc);
  122.     }

  123.     /**
  124.      * Compute the de-Moivre Term
  125.      *
  126.      * @param x X
  127.      *
  128.      * @return The de-Moivre Term
  129.      *
  130.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  131.      */

  132.     public double deMoivreTerm (
  133.         final double x)
  134.         throws java.lang.Exception
  135.     {
  136.         if (!org.drip.numerical.common.NumberUtil.IsValid (x) || 0. > x)
  137.         {
  138.             throw new java.lang.Exception ("StirlingSeries::deMoivreTerm => Invalid Inputs");
  139.         }

  140.         return java.lang.Math.exp (1. - x) * java.lang.Math.pow (
  141.             x - 1.,
  142.             x - 0.5
  143.         );
  144.     }

  145.     @Override public double evaluate (
  146.         final double x)
  147.         throws java.lang.Exception
  148.     {
  149.         return java.lang.Math.sqrt (2. * java.lang.Math.PI) * deMoivreTerm (x);
  150.     }

  151.     @Override public org.drip.numerical.estimation.R1Estimate boundedEstimate (
  152.         final double x)
  153.     {
  154.         try
  155.         {
  156.             double deMoivreTerm = deMoivreTerm (x);

  157.             double estimate = java.lang.Math.sqrt (2. * java.lang.Math.PI) * deMoivreTerm;

  158.             return new org.drip.numerical.estimation.R1Estimate (
  159.                 estimate,
  160.                 estimate,
  161.                 java.lang.Math.E * deMoivreTerm
  162.             );
  163.         }
  164.         catch (java.lang.Exception e)
  165.         {
  166.             e.printStackTrace();
  167.         }

  168.         return null;
  169.     }

  170.     /**
  171.      * Compute the Bounded Function Estimates along with the First Order Laplace Correction
  172.      *
  173.      * @param x X
  174.      *
  175.      * @return The Bounded Function Estimates along with the First Order Laplace Correction
  176.      */

  177.     public org.drip.numerical.estimation.R1Estimate laplaceCorrectionEstimate (
  178.         final double x)
  179.     {
  180.         java.util.TreeMap<java.lang.Integer, java.lang.Double> termWeightMap = new
  181.             java.util.TreeMap<java.lang.Integer, java.lang.Double>();

  182.         termWeightMap.put (
  183.             1,
  184.             1. / 12.
  185.         );

  186.         try
  187.         {
  188.             return seriesEstimate (
  189.                 x,
  190.                 termWeightMap,
  191.                 new org.drip.numerical.estimation.R1ToR1Series (
  192.                     org.drip.numerical.estimation.R1ToR1SeriesTerm.Asymptotic(),
  193.                     true,
  194.                     termWeightMap
  195.                 )
  196.             );
  197.         }
  198.         catch (java.lang.Exception e)
  199.         {
  200.             e.printStackTrace();
  201.         }

  202.         return null;
  203.     }

  204.     /**
  205.      * Compute the Bounded Function Estimates along with the Higher Order Nemes Correction
  206.      *
  207.      * @param x X
  208.      *
  209.      * @return The Bounded Function Estimates along with the Higher Order Nemes Correction
  210.      */

  211.     public org.drip.numerical.estimation.R1Estimate nemesCorrectionEstimate (
  212.         final double x)
  213.     {
  214.         java.util.TreeMap<java.lang.Integer, java.lang.Double> termWeightMap = new
  215.             java.util.TreeMap<java.lang.Integer, java.lang.Double>();

  216.         termWeightMap.put (
  217.             1,
  218.             1. / 12.
  219.         );

  220.         termWeightMap.put (
  221.             2,
  222.             1. / 288.
  223.         );

  224.         termWeightMap.put (
  225.             3,
  226.             -139. / 51840.
  227.         );

  228.         termWeightMap.put (
  229.             4,
  230.             -571. / 2488320.
  231.         );

  232.         try
  233.         {
  234.             return seriesEstimate (
  235.                 x,
  236.                 termWeightMap,
  237.                 new org.drip.numerical.estimation.R1ToR1Series (
  238.                     org.drip.numerical.estimation.R1ToR1SeriesTerm.Asymptotic(),
  239.                     true,
  240.                     termWeightMap
  241.                 )
  242.             );
  243.         }
  244.         catch (java.lang.Exception e)
  245.         {
  246.             e.printStackTrace();
  247.         }

  248.         return null;
  249.     }
  250. }