EulerQuadratureEstimator.java

  1. package org.drip.specialfunction.hypergeometric;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>EulerQuadratureEstimator</i> estimates the Hyper-geometric Function using the Euler Integral
  76.  * Representation. The References are:
  77.  *
  78.  * <br><br>
  79.  *  <ul>
  80.  *      <li>
  81.  *          Gessel, I., and D. Stanton (1982): Strange Evaluations of Hyper-geometric Series <i>SIAM Journal
  82.  *              on Mathematical Analysis</i> <b>13 (2)</b> 295-308
  83.  *      </li>
  84.  *      <li>
  85.  *          Koepf, W (1995): Algorithms for m-fold Hyper-geometric Summation <i>Journal of Symbolic
  86.  *              Computation</i> <b>20 (4)</b> 399-417
  87.  *      </li>
  88.  *      <li>
  89.  *          Lavoie, J. L., F. Grondin, and A. K. Rathie (1996): Generalization of Whipple’s Theorem on the
  90.  *              Sum of a (_2^3)F(a,b;c;z) <i>Journal of Computational and Applied Mathematics</i> <b>72</b>
  91.  *              293-300
  92.  *      </li>
  93.  *      <li>
  94.  *          National Institute of Standards and Technology (2019): Hyper-geometric Function
  95.  *              https://dlmf.nist.gov/15
  96.  *      </li>
  97.  *      <li>
  98.  *          Wikipedia (2019): Hyper-geometric Function https://en.wikipedia.org/wiki/Hypergeometric_function
  99.  *      </li>
  100.  *  </ul>
  101.  *
  102.  *  <br><br>
  103.  *  <ul>
  104.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  105.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FunctionAnalysisLibrary.md">Function Analysis Library</a></li>
  106.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/README.md">Special Function Implementation Analysis</a></li>
  107.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/hypergeometric/README.md">Hyper-geometric Function Estimation Schemes</a></li>
  108.  *  </ul>
  109.  *
  110.  * @author Lakshmi Krishnamurthy
  111.  */

  112. public class EulerQuadratureEstimator extends
  113.     org.drip.specialfunction.definition.RegularHypergeometricEstimator
  114. {
  115.     private int _quadratureCount = -1;
  116.     private org.drip.function.definition.R2ToR1 _logBetaEstimator = null;

  117.     /**
  118.      * EulerQuadratureEstimator Constructor
  119.      *
  120.      * @param hypergeometricParameters Hyper-geometric Parameters
  121.      * @param logBetaEstimator Log Beta Estimator
  122.      * @param quadratureCount Count of the Integrand Quadrature
  123.      *
  124.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  125.      */

  126.     public EulerQuadratureEstimator (
  127.         final org.drip.specialfunction.definition.HypergeometricParameters hypergeometricParameters,
  128.         final org.drip.function.definition.R2ToR1 logBetaEstimator,
  129.         final int quadratureCount)
  130.         throws java.lang.Exception
  131.     {
  132.         super (hypergeometricParameters);

  133.         if (null == (_logBetaEstimator = logBetaEstimator) ||
  134.             0 >= (_quadratureCount = quadratureCount))
  135.         {
  136.             throw new java.lang.Exception ("EulerQuadratureEstimator Constructor => Invalid Inputs");
  137.         }
  138.     }

  139.     /**
  140.      * Retrieve the Quadrature Count
  141.      *
  142.      * @return The Quadrature Count
  143.      */

  144.     public int quadratureCount()
  145.     {
  146.         return _quadratureCount;
  147.     }

  148.     /**
  149.      * Retrieve the Log Beta Estimator
  150.      *
  151.      * @return The Log Beta Estimator
  152.      */

  153.     public org.drip.function.definition.R2ToR1 logBetaEstimator()
  154.     {
  155.         return _logBetaEstimator;
  156.     }

  157.     @Override public double regularHypergeometric (
  158.         final double z)
  159.         throws java.lang.Exception
  160.     {
  161.         if (!org.drip.numerical.common.NumberUtil.IsValid (z) || z < -1. || z > 1.)
  162.         {
  163.             throw new java.lang.Exception ("EulerQuadratureEstimator::regularHypergeometric => Invalid Inputs");
  164.         }

  165.         org.drip.specialfunction.definition.HypergeometricParameters hypergeometricParameters =
  166.             hypergeometricParameters();

  167.         final double a = hypergeometricParameters.a();

  168.         final double b = hypergeometricParameters.b();

  169.         final double c = hypergeometricParameters.c();

  170.         return org.drip.numerical.integration.NewtonCotesQuadratureGenerator.Zero_PlusOne (
  171.             0.,
  172.             1.,
  173.             _quadratureCount
  174.         ).integrate (
  175.             new org.drip.function.definition.R1ToR1 (null)
  176.             {
  177.                 @Override public double evaluate (
  178.                     final double t)
  179.                     throws java.lang.Exception
  180.                 {
  181.                     return 0. == t || 1. == t ? 0. :
  182.                         java.lang.Math.pow (
  183.                             t,
  184.                             b - 1.
  185.                         ) * java.lang.Math.pow (
  186.                             1. - t,
  187.                             c - b - 1.
  188.                         ) * java.lang.Math.pow (
  189.                             1. - z * t,
  190.                             -a
  191.                         );
  192.                 }
  193.             }
  194.         ) * java.lang.Math.exp (
  195.         -1. * _logBetaEstimator.evaluate (
  196.                 b,
  197.                 c - b
  198.             )
  199.         );
  200.     }

  201.     @Override public double derivative (
  202.         final double z,
  203.         final int order)
  204.         throws java.lang.Exception
  205.     {
  206.         org.drip.specialfunction.definition.HypergeometricParameters hypergeometricParameters =
  207.             hypergeometricParameters();

  208.         double a = hypergeometricParameters.a();

  209.         double b = hypergeometricParameters.b();

  210.         double c = hypergeometricParameters.c();

  211.         return new EulerQuadratureEstimator (
  212.             new org.drip.specialfunction.definition.HypergeometricParameters (
  213.                 a + order,
  214.                 b + order,
  215.                 c + order
  216.             ),
  217.             _logBetaEstimator,
  218.             _quadratureCount
  219.         ).regularHypergeometric (z) * org.drip.numerical.common.NumberUtil.PochhammerSymbol (
  220.             a,
  221.             order
  222.         ) * org.drip.numerical.common.NumberUtil.PochhammerSymbol (
  223.             b,
  224.             order
  225.         ) / org.drip.numerical.common.NumberUtil.PochhammerSymbol (
  226.             c,
  227.             order
  228.         );
  229.     }

  230.     @Override public org.drip.specialfunction.definition.RegularHypergeometricEstimator albinate (
  231.         final org.drip.specialfunction.definition.HypergeometricParameters hypergeometricParametersAlbinate,
  232.         final org.drip.function.definition.R1ToR1 valueScaler,
  233.         final org.drip.function.definition.R1ToR1 zTransformer)
  234.     {
  235.         try
  236.         {
  237.             return new EulerQuadratureEstimator (
  238.                 hypergeometricParametersAlbinate,
  239.                 _logBetaEstimator,
  240.                 _quadratureCount
  241.             )
  242.             {
  243.                 @Override public double regularHypergeometric (
  244.                     final double z)
  245.                     throws java.lang.Exception
  246.                 {
  247.                     return (null == valueScaler ? 1. : valueScaler.evaluate (z)) *
  248.                         super.regularHypergeometric (null == zTransformer ? z : zTransformer.evaluate (z));
  249.                 }
  250.             };
  251.         }
  252.         catch (java.lang.Exception e)
  253.         {
  254.             e.printStackTrace();
  255.         }

  256.         return null;
  257.     }
  258. }