ChebyshevCoefficientMatrix.java
package org.drip.specialfunction.lanczos;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2020 Lakshmi Krishnamurthy
* Copyright (C) 2019 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
* and computational support.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
*
* DROP Product Core implements libraries for the following:
* - Fixed Income Analytics
* - Loan Analytics
* - Transaction Cost Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Asset Liability Management Analytics
* - Capital Estimation Analytics
* - Exposure Analytics
* - Margin Analytics
* - XVA Analytics
*
* DROP Computational Core implements libraries for the following:
* - Algorithm Support
* - Computation Support
* - Function Analysis
* - Model Validation
* - Numerical Analysis
* - Numerical Optimizer
* - Spline Builder
* - Statistical Learning
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>ChebyshevCoefficientMatrix</i> holds the Chebyshev Polynomial Coefficient Matrix Entries. The
* References are:
*
* <br><br>
* <ul>
* <li>
* Godfrey, P. (2001): Lanczos Implementation of the Gamma Function
* http://www.numericana.com/answer/info/godfrey.htm
* </li>
* <li>
* Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007): <i>Numerical Recipes:
* The Art of Scientific Computing 3rd Edition</i> <b>Cambridge University Press</b> New York
* </li>
* <li>
* Pugh, G. R. (2004): <i>An Analysis of the Lanczos Gamma Approximation</i> Ph. D. <b>University of
* British Columbia</b>
* </li>
* <li>
* Toth V. T. (2016): Programmable Calculators – The Gamma Function
* http://www.rskey.org/CMS/index.php/the-library/11
* </li>
* <li>
* Wikipedia (2019): Lanczos Approximation https://en.wikipedia.org/wiki/Lanczos_approximation
* </li>
* </ul>
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FunctionAnalysisLibrary.md">Function Analysis Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/README.md">Special Function Implementation Analysis</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/lanczos/README.md">Lanczos Scheme for Gamma Estimate</a></li>
* </ul>
*
* @author Lakshmi Krishnamurthy
*/
public class ChebyshevCoefficientMatrix
{
/**
* Generate a n X n Chebyshev Coefficient Polynomial Matrix
*
* @param size Size of the Matrix
*
* @return The n X n Chebyshev Coefficient Polynomial Matrix
*/
public static final double[][] Rollout (
final int size)
{
if (0 > size)
{
return null;
}
double[][] coefficientMatrix = new double[size + 1][size + 1];
for (int indexJ = 0; indexJ <= size; ++indexJ)
{
for (int indexI = 0; indexI <= size; ++indexI)
{
coefficientMatrix[indexI][indexJ] = 0.;
}
}
coefficientMatrix[0][0] = 1.;
if (0 == size)
{
return coefficientMatrix;
}
coefficientMatrix[1][1] = 1.;
if (1 == size)
{
return coefficientMatrix;
}
for (int index = 2; index <= size; ++index)
{
coefficientMatrix[index][0] = -1. * coefficientMatrix[index - 2][0];
coefficientMatrix[index][index] = 2. * coefficientMatrix[index - 1][index - 1];
}
for (int indexJ = 1; indexJ <= size; ++indexJ)
{
for (int indexI = indexJ + 1; indexI <= size; ++indexI)
{
coefficientMatrix[indexI][indexJ] = 2. * coefficientMatrix[indexI - 1][indexJ - 1] -
coefficientMatrix[indexI - 2][indexJ];
}
}
return coefficientMatrix;
}
}