ChebyshevCoefficientMatrix.java
- package org.drip.specialfunction.lanczos;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>ChebyshevCoefficientMatrix</i> holds the Chebyshev Polynomial Coefficient Matrix Entries. The
- * References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Godfrey, P. (2001): Lanczos Implementation of the Gamma Function
- * http://www.numericana.com/answer/info/godfrey.htm
- * </li>
- * <li>
- * Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007): <i>Numerical Recipes:
- * The Art of Scientific Computing 3rd Edition</i> <b>Cambridge University Press</b> New York
- * </li>
- * <li>
- * Pugh, G. R. (2004): <i>An Analysis of the Lanczos Gamma Approximation</i> Ph. D. <b>University of
- * British Columbia</b>
- * </li>
- * <li>
- * Toth V. T. (2016): Programmable Calculators – The Gamma Function
- * http://www.rskey.org/CMS/index.php/the-library/11
- * </li>
- * <li>
- * Wikipedia (2019): Lanczos Approximation https://en.wikipedia.org/wiki/Lanczos_approximation
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FunctionAnalysisLibrary.md">Function Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/README.md">Special Function Implementation Analysis</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/lanczos/README.md">Lanczos Scheme for Gamma Estimate</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class ChebyshevCoefficientMatrix
- {
- /**
- * Generate a n X n Chebyshev Coefficient Polynomial Matrix
- *
- * @param size Size of the Matrix
- *
- * @return The n X n Chebyshev Coefficient Polynomial Matrix
- */
- public static final double[][] Rollout (
- final int size)
- {
- if (0 > size)
- {
- return null;
- }
- double[][] coefficientMatrix = new double[size + 1][size + 1];
- for (int indexJ = 0; indexJ <= size; ++indexJ)
- {
- for (int indexI = 0; indexI <= size; ++indexI)
- {
- coefficientMatrix[indexI][indexJ] = 0.;
- }
- }
- coefficientMatrix[0][0] = 1.;
- if (0 == size)
- {
- return coefficientMatrix;
- }
- coefficientMatrix[1][1] = 1.;
- if (1 == size)
- {
- return coefficientMatrix;
- }
- for (int index = 2; index <= size; ++index)
- {
- coefficientMatrix[index][0] = -1. * coefficientMatrix[index - 2][0];
- coefficientMatrix[index][index] = 2. * coefficientMatrix[index - 1][index - 1];
- }
- for (int indexJ = 1; indexJ <= size; ++indexJ)
- {
- for (int indexI = indexJ + 1; indexI <= size; ++indexI)
- {
- coefficientMatrix[indexI][indexJ] = 2. * coefficientMatrix[indexI - 1][indexJ - 1] -
- coefficientMatrix[indexI - 2][indexJ];
- }
- }
- return coefficientMatrix;
- }
- }