PSeriesGenerator.java

  1. package org.drip.specialfunction.lanczos;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>PSeriesGenerator</i> generates the Terms of the Lanczos P Series. The References are:
  76.  *
  77.  * <br><br>
  78.  *  <ul>
  79.  *      <li>
  80.  *          Godfrey, P. (2001): Lanczos Implementation of the Gamma Function
  81.  *              http://www.numericana.com/answer/info/godfrey.htm
  82.  *      </li>
  83.  *      <li>
  84.  *          Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (2007): <i>Numerical Recipes:
  85.  *              The Art of Scientific Computing 3rd Edition</i> <b>Cambridge University Press</b> New York
  86.  *      </li>
  87.  *      <li>
  88.  *          Pugh, G. R. (2004): <i>An Analysis of the Lanczos Gamma Approximation</i> Ph. D. <b>University of
  89.  *              British Columbia</b>
  90.  *      </li>
  91.  *      <li>
  92.  *          Toth V. T. (2016): Programmable Calculators – The Gamma Function
  93.  *              http://www.rskey.org/CMS/index.php/the-library/11
  94.  *      </li>
  95.  *      <li>
  96.  *          Wikipedia (2019): Lanczos Approximation https://en.wikipedia.org/wiki/Lanczos_approximation
  97.  *      </li>
  98.  *  </ul>
  99.  *
  100.  *  <br><br>
  101.  *  <ul>
  102.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  103.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FunctionAnalysisLibrary.md">Function Analysis Library</a></li>
  104.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/README.md">Special Function Implementation Analysis</a></li>
  105.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/lanczos/README.md">Lanczos Scheme for Gamma Estimate</a></li>
  106.  *  </ul>
  107.  *
  108.  * @author Lakshmi Krishnamurthy
  109.  */

  110. public class PSeriesGenerator extends org.drip.numerical.estimation.R0ToR1Series
  111. {
  112.     private double[][] _chebyshevCoefficientMatrix = null;

  113.     /**
  114.      * Construct a Standard Instance of the Lanczos P Series Generator
  115.      *
  116.      * @param g Lanczos g Control
  117.      * @param termCount Lanczos Series Term Count
  118.      *
  119.      * @return Standard Instance of the Lanczos P Series Generator
  120.      */

  121.     public static final PSeriesGenerator Standard (
  122.         final int g,
  123.         final int termCount)
  124.     {
  125.         double[][] chebyshevCoefficientMatrix = org.drip.specialfunction.lanczos.ChebyshevCoefficientMatrix.Rollout
  126.             (2 * termCount);

  127.         if (null == chebyshevCoefficientMatrix)
  128.         {
  129.             return null;
  130.         }

  131.         java.util.TreeMap<java.lang.Integer, java.lang.Double> chebyshevCoefficientWeightMap = new
  132.             java.util.TreeMap<java.lang.Integer, java.lang.Double>();

  133.         double sqrt2OverPI = java.lang.Math.sqrt (2.) / java.lang.Math.PI;

  134.         for (int termIndex = 0; termIndex <= termCount; ++termIndex)
  135.         {
  136.             chebyshevCoefficientWeightMap.put (
  137.                 termIndex,
  138.                 sqrt2OverPI * chebyshevCoefficientMatrix[2 * termCount][2 * termIndex]
  139.             );
  140.         }

  141.         try
  142.         {
  143.             return new PSeriesGenerator (
  144.                 new org.drip.specialfunction.lanczos.PSeriesTerm (g),
  145.                 chebyshevCoefficientWeightMap,
  146.                 chebyshevCoefficientMatrix
  147.             );
  148.         }
  149.         catch (java.lang.Exception e)
  150.         {
  151.             e.printStackTrace();
  152.         }

  153.         return null;
  154.     }

  155.     /**
  156.      * PSeriesGenerator Constructor
  157.      *
  158.      * @param pSeriesTerm Lanczos P Series Term
  159.      * @param chebyshevCoefficientWeightMap Chebyshev Coefficient Term Weight Map
  160.      * @param chebyshevCoefficientMatrix Chebyshev Coefficient Matrix
  161.      *
  162.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  163.      */

  164.     public PSeriesGenerator (
  165.         final org.drip.specialfunction.lanczos.PSeriesTerm pSeriesTerm,
  166.         final java.util.TreeMap<java.lang.Integer, java.lang.Double> chebyshevCoefficientWeightMap,
  167.         final double[][] chebyshevCoefficientMatrix)
  168.         throws java.lang.Exception
  169.     {
  170.         super (
  171.             pSeriesTerm,
  172.             false,
  173.             chebyshevCoefficientWeightMap,
  174.             true
  175.         );

  176.         _chebyshevCoefficientMatrix = chebyshevCoefficientMatrix;
  177.     }

  178.     /**
  179.      * Retrieve the Chebyshev Coefficient Matrix
  180.      *
  181.      * @return The Chebyshev Coefficient Matrix
  182.      */

  183.     public double[][] _chebyshevCoefficientMatrix()
  184.     {
  185.         return _chebyshevCoefficientMatrix;
  186.     }

  187.     /**
  188.      * Retrieve the Series Term Count
  189.      *
  190.      * @return The Series Term Count
  191.      */

  192.     public int termCount()
  193.     {
  194.         return _chebyshevCoefficientMatrix.length;
  195.     }
  196. }