GammaInequalityLemma.java
- package org.drip.specialfunction.property;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>GammaInequalityLemma</i> contains the Verifiable Inequality Lemmas of the Gamma Function. The
- * References are:
- *
- * <br><br>
- * <ul>
- * <li>
- * Blagouchine, I. V. (2014): Re-discovery of Malmsten's Integrals, their Evaluation by Contour
- * Integration Methods, and some Related Results <i>Ramanujan Journal</i> <b>35 (1)</b> 21-110
- * </li>
- * <li>
- * Borwein, J. M., and R. M. Corless (2017): Gamma Function and the Factorial in the Monthly
- * https://arxiv.org/abs/1703.05349 <b>arXiv</b>
- * </li>
- * <li>
- * Davis, P. J. (1959): Leonhard Euler's Integral: A Historical Profile of the Gamma Function
- * <i>American Mathematical Monthly</i> <b>66 (10)</b> 849-869
- * </li>
- * <li>
- * Whitaker, E. T., and G. N. Watson (1996): <i>A Course on Modern Analysis</i> <b>Cambridge
- * University Press</b> New York
- * </li>
- * <li>
- * Wikipedia (2019): Gamma Function https://en.wikipedia.org/wiki/Gamma_function
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FunctionAnalysisLibrary.md">Function Analysis Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/README.md">Special Function Implementation Analysis</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/specialfunction/property/README.md">Special Function Property Lemma Verifiers</a></li>
- * </ul>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class GammaInequalityLemma
- {
- /**
- * Construct the Asymptotic Upper Approximate
- *
- * @param alpha Alpha
- *
- * @return The Asymptotic Upper Approximate
- */
- public static final org.drip.function.definition.R1ToR1Property AsymptoticUpperApproximate (
- final double alpha)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (alpha))
- {
- return null;
- }
- try
- {
- return new org.drip.function.definition.R1ToR1Property (
- org.drip.function.definition.R1ToR1Property.GTE,
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double s)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (s))
- {
- throw new java.lang.Exception
- ("GammaInequalityLemma::AsymptoticUpperApproximate::evaluate => Invalid Inputs");
- }
- return org.drip.specialfunction.loggamma.InfiniteSumEstimator.Weierstrass (1638400).evaluate
- (s + alpha);
- }
- },
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double s)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (s))
- {
- throw new java.lang.Exception
- ("GammaInequalityLemma::AsymptoticUpperApproximate::evaluate => Invalid Inputs");
- }
- return alpha * java.lang.Math.log (s) +
- org.drip.specialfunction.loggamma.InfiniteSumEstimator.Weierstrass (1638400).evaluate (s);
- }
- },
- org.drip.function.definition.R1ToR1Property.MISMATCH_TOLERANCE
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Exponentially Convex Inequality Verifier
- *
- * @param z1 z1
- * @param z2 z2
- *
- * @return The Exponentially Convex Inequality Verifier
- */
- public static final org.drip.function.definition.R1ToR1Property ExponentiallyConvex (
- final double z1,
- final double z2)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z1) ||
- !org.drip.numerical.common.NumberUtil.IsValid (z2))
- {
- return null;
- }
- try
- {
- return new org.drip.function.definition.R1ToR1Property (
- org.drip.function.definition.R1ToR1Property.LTE,
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double t)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (t) || 0. > t || 1. < t)
- {
- throw new java.lang.Exception
- ("GammaInequalityLemma::ExponentiallyConvex::evaluate => Invalid Inputs");
- }
- return org.drip.specialfunction.loggamma.InfiniteSumEstimator.Weierstrass (1638400).evaluate
- (t * z1 + (1. - t) * z2);
- }
- },
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double t)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (t) || 0. > t || 1. < t)
- {
- throw new java.lang.Exception
- ("GammaInequalityLemma::ExponentiallyConvex::evaluate => Invalid Inputs");
- }
- org.drip.specialfunction.loggamma.InfiniteSumEstimator weierStrass =
- org.drip.specialfunction.loggamma.InfiniteSumEstimator.Weierstrass (1638400);
- return t * weierStrass.evaluate (z1) + (1. - t) * weierStrass.evaluate (z2);
- }
- },
- org.drip.function.definition.R1ToR1Property.MISMATCH_TOLERANCE
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Spaced Point Convex Inequality Verifier
- *
- * @param y y
- *
- * @return The Spaced Point Convex Inequality Verifier
- */
- public static final org.drip.function.definition.R1ToR1Property SpacedPointConvex (
- final double y)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (y))
- {
- return null;
- }
- final org.drip.specialfunction.loggamma.InfiniteSumEstimator weierStrass =
- org.drip.specialfunction.loggamma.InfiniteSumEstimator.Weierstrass (1638400);
- try
- {
- final double logGammaY = weierStrass.evaluate (y);
- return new org.drip.function.definition.R1ToR1Property (
- org.drip.function.definition.R1ToR1Property.GT,
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double x)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (x) || x >= y)
- {
- throw new java.lang.Exception
- ("GammaInequalityLemma::SpacedPointConvex::evaluate => Invalid Inputs");
- }
- return (logGammaY - weierStrass.evaluate (x)) / (y - x);
- }
- },
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double x)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (x))
- {
- throw new java.lang.Exception
- ("GammaInequalityLemma::SpacedPointConvex::evaluate => Invalid Inputs");
- }
- org.drip.specialfunction.gamma.EulerIntegralSecondKind eulerIntegralSecondKind =
- new org.drip.specialfunction.gamma.EulerIntegralSecondKind (null);
- return eulerIntegralSecondKind.derivative (
- x,
- 1
- ) - weierStrass.evaluate (x);
- }
- },
- org.drip.function.definition.R1ToR1Property.MISMATCH_TOLERANCE
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Logarithmically Convex Inequality Verifier
- *
- * @return The Logarithmically Convex Inequality Verifier
- */
- public static final org.drip.function.definition.R1ToR1Property LogarithmicConvex()
- {
- final org.drip.specialfunction.loggamma.InfiniteSumEstimator weierStrass =
- org.drip.specialfunction.loggamma.InfiniteSumEstimator.Weierstrass (1638400);
- try
- {
- return new org.drip.function.definition.R1ToR1Property (
- org.drip.function.definition.R1ToR1Property.GT,
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("GammaInequalityLemma::LogarithmicConvex::evaluate => Invalid Inputs");
- }
- return java.lang.Math.log (
- new org.drip.specialfunction.gamma.EulerIntegralSecondKind (null).derivative (
- z,
- 2
- )
- ) + weierStrass.evaluate (z);
- }
- },
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("GammaInequalityLemma::LogarithmicConvex::evaluate => Invalid Inputs");
- }
- return java.lang.Math.log (
- new org.drip.specialfunction.gamma.EulerIntegralSecondKind (null).derivative (
- z,
- 1
- )
- );
- }
- },
- org.drip.function.definition.R1ToR1Property.MISMATCH_TOLERANCE
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Gautschi Left Inequality Verifier
- *
- * @param s s
- *
- * @return The Gautschi Left Inequality Verifier
- */
- public static final org.drip.function.definition.R1ToR1Property GautschiLeft (
- final double s)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (s) || 0. >= s || 1. <= s)
- {
- return null;
- }
- final org.drip.specialfunction.loggamma.InfiniteSumEstimator weierStrass =
- org.drip.specialfunction.loggamma.InfiniteSumEstimator.Weierstrass (1638400);
- try
- {
- return new org.drip.function.definition.R1ToR1Property (
- org.drip.function.definition.R1ToR1Property.LT,
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("GammaInequalityLemma::GautschiLeft::evaluate => Invalid Inputs");
- }
- return (1. - s) * java.lang.Math.log (z);
- }
- },
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("GammaInequalityLemma::GautschiLeft::evaluate => Invalid Inputs");
- }
- return weierStrass.evaluate (z + 1) - weierStrass.evaluate (z + s);
- }
- },
- org.drip.function.definition.R1ToR1Property.MISMATCH_TOLERANCE
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Gautschi Right Inequality Verifier
- *
- * @param s s
- *
- * @return The Gautschi Right Inequality Verifier
- */
- public static final org.drip.function.definition.R1ToR1Property GautschiRight (
- final double s)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (s) || 0. >= s || 1. <= s)
- {
- return null;
- }
- final org.drip.specialfunction.loggamma.InfiniteSumEstimator weierStrass =
- org.drip.specialfunction.loggamma.InfiniteSumEstimator.Weierstrass (1638400);
- try
- {
- return new org.drip.function.definition.R1ToR1Property (
- org.drip.function.definition.R1ToR1Property.LT,
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("GammaInequalityLemma::GautschiRight::evaluate => Invalid Inputs");
- }
- return weierStrass.evaluate (z + 1) - weierStrass.evaluate (z + s);
- }
- },
- new org.drip.function.definition.R1ToR1 (null)
- {
- @Override public double evaluate (
- final double z)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (z))
- {
- throw new java.lang.Exception
- ("GammaInequalityLemma::GautschiRight::evaluate => Invalid Inputs");
- }
- return (1. - s) * java.lang.Math.log (z + 1.);
- }
- },
- org.drip.function.definition.R1ToR1Property.MISMATCH_TOLERANCE
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Jensen Multi-Point Interpolant Convexity Verification
- *
- * @param multiPoint2D Multi-Point 2D
- *
- * @return Jensen Multi-Point Interpolant Convexity Verification
- */
- public static final org.drip.function.definition.R1PropertyVerification JensenMultiPointInterpolant (
- final org.drip.numerical.common.Array2D multiPoint2D)
- {
- if (null == multiPoint2D)
- {
- return null;
- }
- final org.drip.specialfunction.loggamma.InfiniteSumEstimator weierStrass =
- org.drip.specialfunction.loggamma.InfiniteSumEstimator.Weierstrass (1638400);
- double[] xArray = multiPoint2D.x();
- double[] aArray = multiPoint2D.y();
- double interpolantDenominator = 0.;
- double interpolantNumerator = 0.;
- int count = aArray.length;
- double rValue = 0.;
- for (int index = 0; index < count; ++index)
- {
- interpolantNumerator = interpolantNumerator + aArray[index] * xArray[index];
- interpolantDenominator = interpolantDenominator + aArray[index];
- }
- double interpolantDenominatorInverse = 1. / interpolantDenominator;
- try
- {
- double lValue = weierStrass.evaluate (interpolantNumerator* interpolantDenominatorInverse);
- for (int index = 0; index < count; ++index)
- {
- rValue = rValue + aArray[index] * weierStrass.evaluate (xArray[index]);
- }
- return new org.drip.function.definition.R1PropertyVerification (
- lValue,
- rValue = rValue * interpolantDenominatorInverse,
- lValue <= rValue
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- }