| HypergeometricEqualityLemma |  | 0% |  | 0% | 37 | 37 | 163 | 163 | 19 | 19 | 1 | 1 |
| GaussContiguousEqualityLemma |  | 0% |  | 0% | 13 | 13 | 67 | 67 | 7 | 7 | 1 | 1 |
| GammaInequalityLemma |  | 0% |  | 0% | 22 | 22 | 66 | 66 | 8 | 8 | 1 | 1 |
| DigammaEqualityLemma |  | 0% |  | 0% | 14 | 14 | 71 | 71 | 12 | 12 | 1 | 1 |
| IncompleteBetaEqualityLemma |  | 0% | | n/a | 10 | 10 | 67 | 67 | 10 | 10 | 1 | 1 |
| DigammaInequalityLemma |  | 0% | | n/a | 11 | 11 | 61 | 61 | 11 | 11 | 1 | 1 |
| BetaEqualityLemma |  | 0% | | n/a | 7 | 7 | 37 | 37 | 7 | 7 | 1 | 1 |
| DigammaSaddlePointEqualityLemma |  | 0% |  | 0% | 11 | 11 | 31 | 31 | 6 | 6 | 1 | 1 |
| GammaPolynomialQuotientLemma |  | 0% |  | 0% | 9 | 9 | 24 | 24 | 4 | 4 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 12 | 12 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 14 | 14 | 2 | 2 | 1 | 1 |
| BesselSecondEqualityLemma |  | 0% | | n/a | 3 | 3 | 19 | 19 | 3 | 3 | 1 | 1 |
| BesselFirstEqualityLemma |  | 0% | | n/a | 3 | 3 | 17 | 17 | 3 | 3 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 9 | 9 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 11 | 11 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 9 | 9 | 2 | 2 | 1 | 1 |
| GammaEqualityLemma |  | 0% |  | 0% | 5 | 5 | 15 | 15 | 4 | 4 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 9 | 9 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 9 | 9 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R3ToR1() {...} |  | 0% |  | 0% | 8 | 8 | 9 | 9 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R3ToR1() {...} |  | 0% |  | 0% | 8 | 8 | 9 | 9 | 2 | 2 | 1 | 1 |
| GaussContiguousEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 9 | 9 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 9 | 9 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 9 | 9 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 4 | 4 | 2 | 2 | 1 | 1 |
| BigPiEqualityLemma |  | 0% |  | 0% | 4 | 4 | 15 | 15 | 3 | 3 | 1 | 1 |
| GaussContiguousEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 4 | 4 | 2 | 2 | 1 | 1 |
| GaussContiguousEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 9 | 9 | 2 | 2 | 1 | 1 |
| BigPiEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 7 | 7 | 2 | 2 | 1 | 1 |
| GammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 6 | 6 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R3ToR1() {...} |  | 0% |  | 0% | 8 | 8 | 6 | 6 | 2 | 2 | 1 | 1 |
| GammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 9 | 9 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 8 | 8 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 8 | 8 | 2 | 2 | 1 | 1 |
| DigammaSaddlePointEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 8 | 8 | 2 | 2 | 1 | 1 |
| GammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 6 | 6 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R3ToR1() {...} |  | 0% |  | 0% | 8 | 8 | 6 | 6 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R3ToR1() {...} |  | 0% |  | 0% | 8 | 8 | 6 | 6 | 2 | 2 | 1 | 1 |
| DigammaSaddlePointEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 8 | 8 | 2 | 2 | 1 | 1 |
| DigammaSaddlePointEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 8 | 8 | 2 | 2 | 1 | 1 |
| DigammaSaddlePointEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 8 | 8 | 2 | 2 | 1 | 1 |
| BigPiEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 5 | 5 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R3ToR1() {...} |  | 0% |  | 0% | 8 | 8 | 6 | 6 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 7 | 7 | 2 | 2 | 1 | 1 |
| DigammaSaddlePointEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 8 | 8 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R2ToR1() {...} |  | 0% | | n/a | 2 | 2 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R2ToR1() {...} |  | 0% | | n/a | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 |
| BetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 6 | 6 | 2 | 2 | 1 | 1 |
| BetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 6 | 6 | 2 | 2 | 1 | 1 |
| GammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 5 | 5 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R3ToR1() {...} |  | 0% |  | 0% | 8 | 8 | 6 | 6 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R3ToR1() {...} |  | 0% |  | 0% | 8 | 8 | 6 | 6 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R2ToR1() {...} |  | 0% | | n/a | 2 | 2 | 4 | 4 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R3ToR1() {...} |  | 0% |  | 0% | 8 | 8 | 6 | 6 | 2 | 2 | 1 | 1 |
| GammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R3ToR1() {...} |  | 0% |  | 0% | 8 | 8 | 6 | 6 | 2 | 2 | 1 | 1 |
| BetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| BetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 4 | 4 | 2 | 2 | 1 | 1 |
| ReimannZetaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 8 | 8 | 2 | 2 | 1 | 1 |
| ReimannZetaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 7 | 7 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 6 | 6 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 4 | 4 | 2 | 2 | 1 | 1 |
| BesselFirstEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R3ToR1() {...} |  | 0% | | n/a | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 |
| BetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| BetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| GammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 6 | 6 | 2 | 2 | 1 | 1 |
| GammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| GammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| BesselSecondEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 |
| BetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| BetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R2ToR1() {...} |  | 0% | | n/a | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| GammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 6 | 6 | 2 | 2 | 1 | 1 |
| BesselSecondEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 1 |
| BesselFirstEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 1 |
| GammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 6 | 6 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 5 | 5 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaSaddlePointEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 5 | 5 | 2 | 2 | 1 | 1 |
| BigPiEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 5 | 5 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 1 |
| GaussContiguousEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R2ToR1() {...} |  | 0% | | n/a | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 |
| BetaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaSaddlePointEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 5 | 5 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R2ToR1() {...} |  | 0% | | n/a | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| GammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 5 | 5 | 2 | 2 | 1 | 1 |
| GammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 7 | 7 | 2 | 2 | 1 | 1 |
| GaussContiguousEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 4 | 4 | 2 | 2 | 1 | 1 |
| GaussContiguousEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| BetaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 1 |
| GammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 7 | 7 | 2 | 2 | 1 | 1 |
| GammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R2ToR1() {...} |  | 0% | | n/a | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| IncompleteBetaEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 6 | 6 | 5 | 5 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 5 | 5 | 2 | 2 | 1 | 1 |
| BesselSecondEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| BesselFirstEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| GammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 5 | 5 | 2 | 2 | 1 | 1 |
| GammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| BetaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R2ToR1() {...} |  | 0% | | n/a | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 |
| ReimannZetaEqualityLemma |  | 0% | | n/a | 2 | 2 | 5 | 5 | 2 | 2 | 1 | 1 |
| BesselSecondEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| BesselFirstEqualityLemma.new R2ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 5 | 5 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R3ToR1() {...} |  | 0% | | n/a | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 |
| BigPiEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| GammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 5 | 5 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R3ToR1() {...} |  | 0% | | n/a | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 |
| BetaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| GammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R2ToR1() {...} |  | 0% | | n/a | 2 | 2 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| GaussContiguousEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| GaussContiguousEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| GaussContiguousEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| GaussContiguousEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| GaussContiguousEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R3ToR1() {...} |  | 0% | | n/a | 2 | 2 | 3 | 3 | 2 | 2 | 1 | 1 |
| DigammaSaddlePointEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaSaddlePointEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaSaddlePointEqualityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| DigammaInequalityLemma.new R1ToR1() {...} |  | 0% |  | 0% | 3 | 3 | 4 | 4 | 2 | 2 | 1 | 1 |
| GaussContiguousEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R2ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |
| HypergeometricEqualityLemma.new R1ToR1() {...} |  | 0% | | n/a | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 |