SegmentBestFitResponse.java
- package org.drip.spline.params;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- * Copyright (C) 2013 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>SegmentBestFitResponse </i>implements basis per-segment Fitness Penalty Parameter Set. Currently it
- * contains the Best Fit Penalty Weight Grid Matrix and the corresponding Segment Local Predictor
- * Ordinate/Response Match Pair.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/SplineBuilderLibrary.md">Spline Builder Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spline/README.md">Basis Splines and Linear Compounders across a Broad Family of Spline Basis Functions</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spline/params/README.md">Spline Segment Construction Control Parameters</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class SegmentBestFitResponse {
- private double[] _adblWeight = null;
- private double[] _adblResponse = null;
- private double[] _adblPredictorOrdinate = null;
- /**
- * Construct the SegmentBestFitResponse Instance from the given Inputs
- *
- * @param adblPredictorOrdinate Array of Predictor Ordinates
- * @param adblResponseValue Array of Response Values
- * @param adblWeight Array of Weights
- *
- * @return Instance of SegmentBestFitResponse
- */
- public static final SegmentBestFitResponse Create (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue,
- final double[] adblWeight)
- {
- SegmentBestFitResponse frp = null;
- try {
- frp = new SegmentBestFitResponse (adblWeight, adblResponseValue, adblPredictorOrdinate);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- return frp.normalizeWeights() ? frp : null;
- }
- /**
- * Construct the SegmentBestFitResponse Instance from the given Predictor Ordinate/Response Pairs, using
- * Uniform Weightings.
- *
- * @param adblPredictorOrdinate Array of Predictor Ordinates
- * @param adblResponseValue Array of Response Values
- *
- * @return Instance of SegmentBestFitResponse
- */
- public static final SegmentBestFitResponse Create (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (adblPredictorOrdinate)) return null;
- int iNumWeight = adblPredictorOrdinate.length;
- double[] adblWeight = new double[iNumWeight];
- for (int i = 0; i < iNumWeight; ++i)
- adblWeight[i] = 1.;
- return Create (adblPredictorOrdinate, adblResponseValue, adblWeight);
- }
- private SegmentBestFitResponse (
- final double[] adblWeight,
- final double[] adblResponse,
- final double[] adblPredictorOrdinate)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (_adblWeight = adblWeight) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_adblResponse = adblResponse) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_adblPredictorOrdinate = adblPredictorOrdinate))
- throw new java.lang.Exception ("SegmentBestFitResponse ctr: Invalid Inputs");
- int iNumPointsToFit = _adblWeight.length;
- if (0 == iNumPointsToFit || _adblResponse.length != iNumPointsToFit ||
- _adblPredictorOrdinate.length != iNumPointsToFit)
- throw new java.lang.Exception ("SegmentBestFitResponse ctr: Invalid Inputs");
- }
- private boolean normalizeWeights()
- {
- double dblCumulativeWeight = 0.;
- int iNumPointsToFit = _adblWeight.length;
- for (int i = 0; i < iNumPointsToFit; ++i) {
- if (_adblWeight[i] < 0.) return false;
- dblCumulativeWeight += _adblWeight[i];
- }
- if (0. >= dblCumulativeWeight) return false;
- for (int i = 0; i < iNumPointsToFit; ++i)
- _adblWeight[i] /= dblCumulativeWeight;
- return true;
- }
- /**
- * Retrieve the Array of the Fitness Weights
- *
- * @return The Array of the Fitness Weights
- */
- public double[] weight()
- {
- return _adblWeight;
- }
- /**
- * Retrieve the Indexed Fitness Weight Element
- *
- * @param iIndex The Element Index
- *
- * @return The Indexed Fitness Weight Element
- *
- * @throws java.lang.Exception Thrown if the Index is Invalid
- */
- public double weight (
- final int iIndex)
- throws java.lang.Exception
- {
- if (iIndex >= numPoint())
- throw new java.lang.Exception ("SegmentBestFitResponse::weight => Invalid Index");
- return _adblWeight[iIndex];
- }
- /**
- * Retrieve the Array of Predictor Ordinates
- *
- * @return The Array of Predictor Ordinates
- */
- public double[] predictorOrdinate()
- {
- return _adblPredictorOrdinate;
- }
- /**
- * Retrieve the Indexed Predictor Ordinate Element
- *
- * @param iIndex The Element Index
- *
- * @return The Indexed Predictor Ordinate Element
- *
- * @throws java.lang.Exception Thrown if the Index is Invalid
- */
- public double predictorOrdinate (
- final int iIndex)
- throws java.lang.Exception
- {
- if (iIndex >= numPoint())
- throw new java.lang.Exception ("SegmentBestFitResponse::predictorOrdinate => Invalid Index");
- return _adblPredictorOrdinate[iIndex];
- }
- /**
- * Retrieve the Array of Responses
- *
- * @return The Array of Responses
- */
- public double[] response()
- {
- return _adblResponse;
- }
- /**
- * Retrieve the Indexed Response Element
- *
- * @param iIndex The Element Index
- *
- * @return The Indexed Response Element
- *
- * @throws java.lang.Exception Thrown if the Index is Invalid
- */
- public double response (
- final int iIndex)
- throws java.lang.Exception
- {
- if (iIndex >= numPoint())
- throw new java.lang.Exception ("SegmentBestFitResponse::response => Invalid Index");
- return _adblResponse[iIndex];
- }
- /**
- * Retrieve the Number of Fitness Points
- *
- * @return The Number of Fitness Points
- */
- public int numPoint()
- {
- return null == _adblResponse ? 0 : _adblResponse.length;
- }
- }