StretchBestFitResponse.java

  1. package org.drip.spline.params;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  * Copyright (C) 2016 Lakshmi Krishnamurthy
  11.  * Copyright (C) 2015 Lakshmi Krishnamurthy
  12.  * Copyright (C) 2014 Lakshmi Krishnamurthy
  13.  * Copyright (C) 2013 Lakshmi Krishnamurthy
  14.  *
  15.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  16.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  17.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  18.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  19.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  20.  *      and computational support.
  21.  *  
  22.  *      https://lakshmidrip.github.io/DROP/
  23.  *  
  24.  *  DROP is composed of three modules:
  25.  *  
  26.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  27.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  28.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  29.  *
  30.  *  DROP Product Core implements libraries for the following:
  31.  *  - Fixed Income Analytics
  32.  *  - Loan Analytics
  33.  *  - Transaction Cost Analytics
  34.  *
  35.  *  DROP Portfolio Core implements libraries for the following:
  36.  *  - Asset Allocation Analytics
  37.  *  - Asset Liability Management Analytics
  38.  *  - Capital Estimation Analytics
  39.  *  - Exposure Analytics
  40.  *  - Margin Analytics
  41.  *  - XVA Analytics
  42.  *
  43.  *  DROP Computational Core implements libraries for the following:
  44.  *  - Algorithm Support
  45.  *  - Computation Support
  46.  *  - Function Analysis
  47.  *  - Model Validation
  48.  *  - Numerical Analysis
  49.  *  - Numerical Optimizer
  50.  *  - Spline Builder
  51.  *  - Statistical Learning
  52.  *
  53.  *  Documentation for DROP is Spread Over:
  54.  *
  55.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  56.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  57.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  58.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  59.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  60.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  61.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  62.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  63.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  64.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  65.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  66.  *
  67.  *  Licensed under the Apache License, Version 2.0 (the "License");
  68.  *      you may not use this file except in compliance with the License.
  69.  *  
  70.  *  You may obtain a copy of the License at
  71.  *      http://www.apache.org/licenses/LICENSE-2.0
  72.  *  
  73.  *  Unless required by applicable law or agreed to in writing, software
  74.  *      distributed under the License is distributed on an "AS IS" BASIS,
  75.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  76.  *  
  77.  *  See the License for the specific language governing permissions and
  78.  *      limitations under the License.
  79.  */

  80. /**
  81.  * <i>StretchBestFitResponse</i> implements basis per-Stretch Fitness Penalty Parameter Set. Currently it
  82.  * contains the Best Fit Penalty Weight Grid Matrix and the corresponding Local Predictor Ordinate/Response
  83.  * Match Pair. StretchBestFitResponse exports the following methods:
  84.  *
  85.  * <br><br>
  86.  *  <ul>
  87.  *      <li>
  88.  *          Retrieve the Array of the Fitness Weights.
  89.  *      </li>
  90.  *      <li>
  91.  *          Retrieve the Indexed Fitness Weight Element.
  92.  *      </li>
  93.  *      <li>
  94.  *          Retrieve the Array of Predictor Ordinates.
  95.  *      </li>
  96.  *      <li>
  97.  *          Retrieve the Indexed Predictor Ordinate Element.
  98.  *      </li>
  99.  *      <li>
  100.  *          Retrieve the Array of Responses.
  101.  *      </li>
  102.  *      <li>
  103.  *          Retrieve the Indexed Response Element.
  104.  *      </li>
  105.  *      <li>
  106.  *          Retrieve the Number of Fitness Points.
  107.  *      </li>
  108.  *      <li>
  109.  *          Generate the Segment Local Best Fit Weighted Response contained within the specified Segment.
  110.  *      </li>
  111.  *      <li>
  112.  *          Construct the StretchBestFitResponse Instance from the given Inputs.
  113.  *      </li>
  114.  *      <li>
  115.  *          Construct the StretchBestFitResponse Instance from the given Predictor Ordinate/Response Pairs,
  116.  *              using Uniform Weightings.
  117.  *      </li>
  118.  *  </ul>
  119.  *
  120.  * <br><br>
  121.  *  <ul>
  122.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  123.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/SplineBuilderLibrary.md">Spline Builder Library</a></li>
  124.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spline/README.md">Basis Splines and Linear Compounders across a Broad Family of Spline Basis Functions</a></li>
  125.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spline/params/README.md">Spline Segment Construction Control Parameters</a></li>
  126.  *  </ul>
  127.  * <br><br>
  128.  *
  129.  * @author Lakshmi Krishnamurthy
  130.  */

  131. public class StretchBestFitResponse {
  132.     private double[] _adblWeight = null;
  133.     private double[] _adblResponse = null;
  134.     private double[] _adblPredictorOrdinate = null;

  135.     /**
  136.      * Construct the StretchBestFitResponse Instance from the given Inputs
  137.      *
  138.      * @param adblPredictorOrdinate Array of Predictor Ordinates
  139.      * @param adblResponseValue Array of Response Values
  140.      * @param adblWeight Array of Weights
  141.      *
  142.      * @return Instance of StretchBestFitResponse
  143.      */

  144.     public static final StretchBestFitResponse Create (
  145.         final double[] adblPredictorOrdinate,
  146.         final double[] adblResponseValue,
  147.         final double[] adblWeight)
  148.     {
  149.         StretchBestFitResponse frp = null;

  150.         try {
  151.             frp = new StretchBestFitResponse (adblWeight, adblResponseValue, adblPredictorOrdinate);
  152.         } catch (java.lang.Exception e) {
  153.             e.printStackTrace();

  154.             return null;
  155.         }

  156.         return frp.normalizeWeights() ? frp : null;
  157.     }

  158.     /**
  159.      * Construct the StretchBestFitResponse Instance from the given Inputs
  160.      *
  161.      * @param aiPredictorOrdinate Array of Predictor Ordinates
  162.      * @param adblResponseValue Array of Response Values
  163.      * @param adblWeight Array of Weights
  164.      *
  165.      * @return Instance of StretchBestFitResponse
  166.      */

  167.     public static final StretchBestFitResponse Create (
  168.         final int[] aiPredictorOrdinate,
  169.         final double[] adblResponseValue,
  170.         final double[] adblWeight)
  171.     {
  172.         if (null == aiPredictorOrdinate) return null;

  173.         int iNumPredictorOrdinate = aiPredictorOrdinate.length;
  174.         double[] adblPredictorOrdinate = new double[iNumPredictorOrdinate];

  175.         if (0 == iNumPredictorOrdinate) return null;

  176.         for (int i = 0; i < iNumPredictorOrdinate; ++i)
  177.             adblPredictorOrdinate[i] = aiPredictorOrdinate[i];

  178.         return Create (adblPredictorOrdinate, adblResponseValue, adblWeight);
  179.     }

  180.     /**
  181.      * Construct the StretchBestFitResponse Instance from the given Predictor Ordinate/Response Pairs, using
  182.      *  Uniform Weightings.
  183.      *
  184.      * @param adblPredictorOrdinate Array of Predictor Ordinates
  185.      * @param adblResponseValue Array of Response Values
  186.      *
  187.      * @return Instance of StretchBestFitResponse
  188.      */

  189.     public static final StretchBestFitResponse Create (
  190.         final double[] adblPredictorOrdinate,
  191.         final double[] adblResponseValue)
  192.     {
  193.         if (!org.drip.numerical.common.NumberUtil.IsValid (adblPredictorOrdinate)) return null;

  194.         int iNumWeight = adblPredictorOrdinate.length;
  195.         double[] adblWeight = new double[iNumWeight];

  196.         for (int i = 0; i < iNumWeight; ++i)
  197.             adblWeight[i] = 1.;

  198.         return Create (adblPredictorOrdinate, adblResponseValue, adblWeight);
  199.     }

  200.     private StretchBestFitResponse (
  201.         final double[] adblWeight,
  202.         final double[] adblResponse,
  203.         final double[] adblPredictorOrdinate)
  204.         throws java.lang.Exception
  205.     {
  206.         if (!org.drip.numerical.common.NumberUtil.IsValid (_adblWeight = adblWeight) ||
  207.             !org.drip.numerical.common.NumberUtil.IsValid (_adblResponse = adblResponse) ||
  208.                 !org.drip.numerical.common.NumberUtil.IsValid (_adblPredictorOrdinate = adblPredictorOrdinate))
  209.             throw new java.lang.Exception ("StretchBestFitResponse ctr: Invalid Inputs");

  210.         int iNumPointsToFit = _adblWeight.length;

  211.         if (0 == iNumPointsToFit || _adblResponse.length != iNumPointsToFit || _adblPredictorOrdinate.length
  212.             != iNumPointsToFit)
  213.             throw new java.lang.Exception ("StretchBestFitResponse ctr: Invalid Inputs");
  214.     }

  215.     private boolean normalizeWeights()
  216.     {
  217.         double dblCumulativeWeight = 0.;
  218.         int iNumPointsToFit = _adblWeight.length;

  219.         for (int i = 0; i < iNumPointsToFit; ++i) {
  220.             if (_adblWeight[i] < 0.) return false;

  221.             dblCumulativeWeight += _adblWeight[i];
  222.         }

  223.         if (0. >= dblCumulativeWeight) return false;

  224.         for (int i = 0; i < iNumPointsToFit; ++i)
  225.             _adblWeight[i] /= dblCumulativeWeight;

  226.         return true;
  227.     }

  228.     /**
  229.      * Retrieve the Array of the Fitness Weights
  230.      *
  231.      * @return The Array of the Fitness Weights
  232.      */

  233.     public double[] weight()
  234.     {
  235.         return _adblWeight;
  236.     }

  237.     /**
  238.      * Retrieve the Indexed Fitness Weight Element
  239.      *
  240.      * @param iIndex The Element Index
  241.      *
  242.      * @return The Indexed Fitness Weight Element
  243.      *
  244.      * @throws java.lang.Exception Thrown if the Index is Invalid
  245.      */

  246.     public double weight (
  247.         final int iIndex)
  248.         throws java.lang.Exception
  249.     {
  250.         if (iIndex >= numPoint())
  251.             throw new java.lang.Exception ("StretchBestFitResponse::weight => Invalid Index");

  252.         return _adblWeight[iIndex];
  253.     }

  254.     /**
  255.      * Retrieve the Array of Predictor Ordinates
  256.      *
  257.      * @return The Array of Predictor Ordinates
  258.      */

  259.     public double[] predictorOrdinate()
  260.     {
  261.         return _adblPredictorOrdinate;
  262.     }

  263.     /**
  264.      * Retrieve the Indexed Predictor Ordinate Element
  265.      *
  266.      * @param iIndex The Element Index
  267.      *
  268.      * @return The Indexed Predictor Ordinate Element
  269.      *
  270.      * @throws java.lang.Exception Thrown if the Index is Invalid
  271.      */

  272.     public double predictorOrdinate (
  273.         final int iIndex)
  274.         throws java.lang.Exception
  275.     {
  276.         if (iIndex >= numPoint())
  277.             throw new java.lang.Exception ("StretchBestFitResponse::predictorOrdinate => Invalid Index");

  278.         return _adblPredictorOrdinate[iIndex];
  279.     }

  280.     /**
  281.      * Retrieve the Array of Responses
  282.      *
  283.      * @return The Array of Responses
  284.      */

  285.     public double[] response()
  286.     {
  287.         return _adblResponse;
  288.     }

  289.     /**
  290.      * Retrieve the Indexed Response Element
  291.      *
  292.      * @param iIndex The Element Index
  293.      *
  294.      * @return The Indexed Response Element
  295.      *
  296.      * @throws java.lang.Exception Thrown if the Index is Invalid
  297.      */

  298.     public double response (
  299.         final int iIndex)
  300.         throws java.lang.Exception
  301.     {
  302.         if (iIndex >= numPoint())
  303.             throw new java.lang.Exception ("StretchBestFitResponse::response => Invalid Index");

  304.         return _adblResponse[iIndex];
  305.     }

  306.     /**
  307.      * Retrieve the Number of Fitness Points
  308.      *
  309.      * @return The Number of Fitness Points
  310.      */

  311.     public int numPoint()
  312.     {
  313.         return null == _adblResponse ? 0 : _adblResponse.length;
  314.     }

  315.     /**
  316.      * Generate the Segment Local Best Fit Weighted Response contained within the specified Segment
  317.      *
  318.      * @param ics The Inelastics Instance to be used for the Localization
  319.      *
  320.      * @return The Segment Local Best Fit Weighted Response
  321.      */

  322.     public SegmentBestFitResponse sizeToSegment (
  323.         final org.drip.spline.segment.LatentStateInelastic ics)
  324.     {
  325.         if (null == ics) return null;

  326.         int iNumPoint = numPoint();

  327.         java.util.List<java.lang.Integer> lsIndex = new java.util.ArrayList<java.lang.Integer>();

  328.         for (int i = 0; i < iNumPoint; ++i) {
  329.             try {
  330.                 if (ics.in (_adblPredictorOrdinate[i])) lsIndex.add (i);
  331.             } catch (java.lang.Exception e) {
  332.                 e.printStackTrace();

  333.                 return null;
  334.             }
  335.         }

  336.         int iNumLocalPoint = lsIndex.size();

  337.         if (0 == iNumLocalPoint) return null;

  338.         int iIndex = 0;
  339.         double[] adblWeight = new double[iNumLocalPoint];
  340.         double[] adblResponse = new double[iNumLocalPoint];
  341.         double[] adblPredictor = new double[iNumLocalPoint];

  342.         for (int i : lsIndex) {
  343.             adblWeight[iIndex] = _adblWeight[i];
  344.             adblResponse[iIndex] = _adblResponse[i];
  345.             adblPredictor[iIndex++] = _adblPredictorOrdinate[i];
  346.         }

  347.         return org.drip.spline.params.SegmentBestFitResponse.Create (adblPredictor, adblResponse,
  348.             adblWeight);
  349.     }
  350. }