AkimaLocalC1Generator.java
- package org.drip.spline.pchip;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- * Copyright (C) 2013 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>AkimaLocalC1Generator</i> generates the local control C1 Slope using the Akima Cubic Algorithm.
- *
- * <br><br>
- * <ul>
- * <li>
- * Akima (1970): A New Method of Interpolation and Smooth Curve Fitting based on Local Procedures
- * <i>Journal of the Association for the Computing Machinery</i> <b>17 (4)</b> 589-602
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/SplineBuilderLibrary.md">Spline Builder Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spline/README.md">Basis Splines and Linear Compounders across a Broad Family of Spline Basis Functions</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spline/pchip/README.md">Monotone Convex Themed PCHIP Splines</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class AkimaLocalC1Generator {
- private double[] _adblResponseValue = null;
- private double[] _adblPredictorOrdinate = null;
- private double[] _adblExtendedResponseValue = null;
- private double[] _adblExtendedPredictorOrdinate = null;
- /**
- * Construct an Instance of AkimaLocalC1Generator from the Array of the supplied Predictor Ordinates
- * and the Response Values
- *
- * @param adblPredictorOrdinate Array of the Predictor Ordinates
- * @param adblResponseValue Array of the Response Values
- *
- * @return Instance of AkimaLocalC1Generator
- */
- public static final AkimaLocalC1Generator Create (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue)
- {
- AkimaLocalC1Generator alcr = null;
- try {
- alcr = new AkimaLocalC1Generator (adblPredictorOrdinate, adblResponseValue);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- return alcr.extendPredictorOrdinate() && alcr.extendResponseValue() ? alcr : null;
- }
- private AkimaLocalC1Generator (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue)
- throws java.lang.Exception
- {
- if (null == (_adblPredictorOrdinate = adblPredictorOrdinate) || null == (_adblResponseValue =
- adblResponseValue))
- throw new java.lang.Exception ("AkimaLocalC1Generator ctr: Invalid Inputs");
- int iNumPredictorOrdinate = _adblPredictorOrdinate.length;
- if (2 >= iNumPredictorOrdinate || iNumPredictorOrdinate != _adblResponseValue.length)
- throw new java.lang.Exception ("AkimaLocalC1Generator ctr: Invalid Inputs");
- }
- private boolean extendPredictorOrdinate()
- {
- int iNumPredictorOrdinate = _adblPredictorOrdinate.length;
- int iNumExtendedPredictorOrdinate = iNumPredictorOrdinate + 4;
- _adblExtendedPredictorOrdinate = new double[iNumExtendedPredictorOrdinate];
- for (int i = 0; i < iNumExtendedPredictorOrdinate; ++i) {
- if (2 <= i && iNumExtendedPredictorOrdinate - 3 >= i)
- _adblExtendedPredictorOrdinate[i] = _adblPredictorOrdinate[i - 2];
- }
- double dblSkippedLeftPredictorWidth = _adblPredictorOrdinate[2] - _adblPredictorOrdinate[0];
- _adblExtendedPredictorOrdinate[0] = _adblPredictorOrdinate[0] - dblSkippedLeftPredictorWidth;
- _adblExtendedPredictorOrdinate[1] = _adblPredictorOrdinate[1] - dblSkippedLeftPredictorWidth;
- double dblSkippedRightPredictorWidth = _adblPredictorOrdinate[iNumPredictorOrdinate - 1] -
- _adblPredictorOrdinate[iNumPredictorOrdinate - 3];
- _adblExtendedPredictorOrdinate[iNumExtendedPredictorOrdinate - 2] =
- _adblPredictorOrdinate[iNumPredictorOrdinate - 2] + dblSkippedRightPredictorWidth;
- _adblExtendedPredictorOrdinate[iNumExtendedPredictorOrdinate - 1] =
- _adblPredictorOrdinate[iNumPredictorOrdinate - 1] + dblSkippedRightPredictorWidth;
- return true;
- }
- private boolean setExtendedResponseValue (
- final int i,
- final boolean bRight)
- {
- if (bRight) {
- _adblExtendedResponseValue[i] = 2. * (_adblExtendedResponseValue[i - 1] -
- _adblExtendedResponseValue[i - 2]) / (_adblExtendedPredictorOrdinate[i - 1] -
- _adblExtendedPredictorOrdinate[i - 2]) - ((_adblExtendedResponseValue[i - 2] -
- _adblExtendedResponseValue[i - 3]) / (_adblExtendedPredictorOrdinate[i - 2] -
- _adblExtendedPredictorOrdinate[i - 3]));
- _adblExtendedResponseValue[i] = _adblExtendedResponseValue[i] * (_adblExtendedResponseValue[i] -
- _adblExtendedResponseValue[i - 1]) + _adblExtendedResponseValue[i - 1];
- } else {
- _adblExtendedResponseValue[i] = 2. * (_adblExtendedResponseValue[i + 2] -
- _adblExtendedResponseValue[i + 1]) / (_adblExtendedPredictorOrdinate[i + 2] -
- _adblExtendedPredictorOrdinate[i + 1]) - ((_adblExtendedResponseValue[i + 3] -
- _adblExtendedResponseValue[i + 2]) / (_adblExtendedPredictorOrdinate[i + 3] -
- _adblExtendedPredictorOrdinate[i + 2]));
- _adblExtendedResponseValue[i] = _adblExtendedResponseValue[i + 1] - _adblExtendedResponseValue[i]
- * (_adblExtendedResponseValue[i + 1] - _adblExtendedResponseValue[i]);
- }
- return true;
- }
- private boolean extendResponseValue()
- {
- int iNumResponseValue = _adblResponseValue.length;
- int iNumExtendedResponseValue = iNumResponseValue + 4;
- _adblExtendedResponseValue = new double[iNumExtendedResponseValue];
- for (int i = 0; i < iNumExtendedResponseValue; ++i) {
- if (2 <= i && iNumExtendedResponseValue - 3 >= i)
- _adblExtendedResponseValue[i] = _adblResponseValue[i - 2];
- }
- return setExtendedResponseValue (1, false) && setExtendedResponseValue (0, false) &&
- setExtendedResponseValue (iNumExtendedResponseValue - 2, true) && setExtendedResponseValue
- (iNumExtendedResponseValue - 1, true) ? true : false;
- }
- public double[] C1()
- {
- int iNumPredictorOrdinate = _adblPredictorOrdinate.length;
- double[] adblC1 = new double[iNumPredictorOrdinate];
- double[] adblExtendedSlope = new double[iNumPredictorOrdinate + 3];
- for (int i = 0; i < iNumPredictorOrdinate + 3; ++i)
- adblExtendedSlope[i] = (_adblExtendedResponseValue[i + 1] - _adblExtendedResponseValue[i]) /
- (_adblExtendedPredictorOrdinate[i + 1] - _adblExtendedPredictorOrdinate[i]);
- for (int i = 0; i < iNumPredictorOrdinate; ++i) {
- double dblSlope10 = java.lang.Math.abs (adblExtendedSlope[i + 1] - adblExtendedSlope[i]);
- double dblSlope32 = java.lang.Math.abs (adblExtendedSlope[i + 3] - adblExtendedSlope[i + 2]);
- if (0. == dblSlope10 && 0. == dblSlope32)
- adblC1[i] = 0.5 * (adblExtendedSlope[i + 1] + adblExtendedSlope[i + 2]);
- else
- adblC1[i] = (dblSlope32 * adblExtendedSlope[i + 1] + dblSlope10 * adblExtendedSlope[i + 2]) /
- (dblSlope10 + dblSlope32);
- }
- return adblC1;
- }
- }