LocalMonotoneCkGenerator.java
- package org.drip.spline.pchip;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- * Copyright (C) 2013 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>LocalMonotoneCkGenerator</i> generates customized Local Stretch by trading off Ck for local control.
- * This class implements the following variants: Akima, Bessel, Harmonic, Hyman83, Hyman89, Kruger, Monotone
- * Convex, as well as the Van Leer and the Huynh/LeFloch limiters. It also provides the following custom
- * control on the resulting C1:
- *
- * <br><br>
- * <ul>
- * <li>
- * Eliminate the Spurious Extrema in the Input C1 Entry
- * </li>
- * <li>
- * Apply the Monotone Filter in the Input C1 Entry
- * </li>
- * <li>
- * Generate a Vanilla C1 Array from the specified Array of Predictor Ordinates and the Response
- * Values
- * </li>
- * <li>
- * Verify if the given Quintic Polynomial is Monotone using the Hyman89 Algorithm, and generate it
- * if necessary
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/SplineBuilderLibrary.md">Spline Builder Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spline/README.md">Basis Splines and Linear Compounders across a Broad Family of Spline Basis Functions</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spline/pchip/README.md">Monotone Convex Themed PCHIP Splines</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class LocalMonotoneCkGenerator {
- /**
- * C1 Type: Vanilla
- */
- public static final java.lang.String C1_VANILLA = "C1_VANILLA";
- /**
- * C1 Type: Akima
- */
- public static final java.lang.String C1_AKIMA = "C1_AKIMA";
- /**
- * C1 Type: Bessel
- */
- public static final java.lang.String C1_BESSEL = "C1_BESSEL";
- /**
- * C1 Type: Harmonic
- */
- public static final java.lang.String C1_HARMONIC = "C1_HARMONIC";
- /**
- * C1 Type: Huynh - Le Floch Limiter
- */
- public static final java.lang.String C1_HUYNH_LE_FLOCH = "C1_HUYNH_LE_FLOCH";
- /**
- * C1 Type: Hyman83
- */
- public static final java.lang.String C1_HYMAN83 = "C1_HYMAN83";
- /**
- * C1 Type: Hyman89
- */
- public static final java.lang.String C1_HYMAN89 = "C1_HYMAN89";
- /**
- * C1 Type: Kruger
- */
- public static final java.lang.String C1_KRUGER = "C1_KRUGER";
- /**
- * C1 Type: Monotone Convex
- */
- public static final java.lang.String C1_MONOTONE_CONVEX = "C1_MONOTONE_CONVEX";
- /**
- * C1 Type: Van Leer Limiter
- */
- public static final java.lang.String C1_VAN_LEER = "C1_VAN_LEER";
- private double[] _adblC1 = null;
- private double[] _adblResponseValue = null;
- private double[] _adblPredictorOrdinate = null;
- /**
- * Eliminate the Spurious Extrema in the Input C1 Entry
- *
- * @param adblC1 The C1 Array in which the Spurious Extrema is to be eliminated
- * @param adblLinearC1 Array of the Linear C1 Entries
- *
- * @return The C1 Array with the Spurious Extrema eliminated
- */
- public static final double[] EliminateSpuriousExtrema (
- final double[] adblC1,
- final double[] adblLinearC1)
- {
- if (null == adblC1 || null == adblLinearC1) return null;
- int iNumEntries = adblC1.length;
- double[] adblUpdatedC1 = new double[iNumEntries];
- adblUpdatedC1[0] = adblC1[0];
- adblUpdatedC1[iNumEntries - 1] = adblC1[iNumEntries - 1];
- if (1 >= iNumEntries || iNumEntries != adblLinearC1.length + 1) return null;
- for (int i = 1; i < iNumEntries - 1; ++i)
- adblUpdatedC1[i] = 0. < adblLinearC1[i] ? java.lang.Math.min (java.lang.Math.max (0., adblC1[i]),
- java.lang.Math.min (adblLinearC1[i], adblLinearC1[i - 1])) : java.lang.Math.max
- (java.lang.Math.min (0., adblC1[i]), java.lang.Math.max (adblLinearC1[i],
- adblLinearC1[i - 1]));
- return adblUpdatedC1;
- }
- /**
- * Apply the Monotone Filter in the Input C1 Entry
- *
- * @param adblC1 The C1 Array in which the Monotone Filter is to be applied
- * @param adblLinearC1 Array of the Linear C1 Entries
- *
- * @return The C1 Array with the Monotone Filter applied
- */
- public static final double[] ApplyMonotoneFilter (
- final double[] adblC1,
- final double[] adblLinearC1)
- {
- if (null == adblC1 || null == adblLinearC1) return null;
- int iNumEntries = adblC1.length;
- double[] adblUpdatedC1 = new double[iNumEntries];
- adblUpdatedC1[0] = adblC1[0];
- if (1 >= iNumEntries || iNumEntries != adblLinearC1.length + 1) return null;
- for (int i = 0; i < iNumEntries; ++i) {
- if (0 == i) {
- if (adblC1[0] * adblLinearC1[0] > 0. && adblLinearC1[0] * adblLinearC1[1] > 0. &&
- java.lang.Math.abs (adblC1[0]) < 3. * java.lang.Math.abs (adblLinearC1[0]))
- adblUpdatedC1[0] = 3. * adblLinearC1[0];
- else if (adblC1[0] * adblLinearC1[0] <= 0.)
- adblUpdatedC1[0] = 0.;
- } else if (iNumEntries == i) {
- if (adblC1[i] * adblLinearC1[i - 1] > 0. && adblLinearC1[i - 1] * adblLinearC1[i - 2] > 0. &&
- java.lang.Math.abs (adblC1[i]) < 3. * java.lang.Math.abs (adblLinearC1[i - 1]))
- adblUpdatedC1[i] = 3. * adblLinearC1[i - 1];
- else if (adblC1[i] * adblLinearC1[i - 1] <= 0.)
- adblUpdatedC1[i] = 0.;
- } else
- adblUpdatedC1[i] = adblC1[i];
- }
- return adblUpdatedC1;
- }
- /**
- * Generate a Vanilla C1 Array from the specified Array of Predictor Ordinates and the Response Values
- *
- * @param adblPredictorOrdinate The Predictor Ordinate Array
- * @param adblResponseValue The Response Value Array
- *
- * @return The C1 Array
- */
- public static final double[] LinearC1 (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue)
- {
- int iNumSegment = adblResponseValue.length - 1;
- double[] adblLinearC1 = new double[iNumSegment];
- for (int i = 0; i < iNumSegment; ++i)
- adblLinearC1[i] = (adblResponseValue[i + 1] - adblResponseValue[i]) /
- (adblPredictorOrdinate[i + 1] - adblPredictorOrdinate[i]);
- return adblLinearC1;
- }
- /**
- * Generate a Bessel C1 Array from the specified Array of Predictor Ordinates and the Response Values
- *
- * @param adblPredictorOrdinate The Predictor Ordinate Array
- * @param adblResponseValue The Response Value Array
- *
- * @return The C1 Array
- */
- public static final double[] BesselC1 (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue)
- {
- int iNumResponse = adblResponseValue.length;
- double[] adblBesselC1 = new double[iNumResponse];
- for (int i = 0; i < iNumResponse; ++i) {
- if (0 == i) {
- adblBesselC1[i] = (adblPredictorOrdinate[2] + adblPredictorOrdinate[1] - 2. *
- adblPredictorOrdinate[0]) * (adblResponseValue[1] - adblResponseValue[0]) /
- (adblPredictorOrdinate[1] - adblPredictorOrdinate[0]);
- adblBesselC1[i] -= (adblPredictorOrdinate[1] - adblPredictorOrdinate[0]) *
- (adblResponseValue[2] - adblResponseValue[1]) / (adblPredictorOrdinate[2] -
- adblPredictorOrdinate[1]);
- adblBesselC1[i] /= (adblPredictorOrdinate[2] - adblPredictorOrdinate[0]);
- } else if (iNumResponse - 1 == i) {
- adblBesselC1[i] = (adblPredictorOrdinate[iNumResponse - 1] -
- adblPredictorOrdinate[iNumResponse - 2]) * (adblResponseValue[iNumResponse - 2] -
- adblResponseValue[iNumResponse - 3]) / (adblPredictorOrdinate[iNumResponse - 2] -
- adblPredictorOrdinate[iNumResponse - 3]);
- adblBesselC1[i] -= (2. * adblPredictorOrdinate[iNumResponse - 1] -
- adblPredictorOrdinate[iNumResponse - 2] - adblPredictorOrdinate[iNumResponse - 3]) *
- (adblResponseValue[iNumResponse - 1] - adblResponseValue[iNumResponse - 2]) /
- (adblPredictorOrdinate[iNumResponse - 1] -
- adblPredictorOrdinate[iNumResponse - 2]);
- adblBesselC1[i] /= (adblPredictorOrdinate[iNumResponse - 1] -
- adblPredictorOrdinate[iNumResponse - 3]);
- } else {
- adblBesselC1[i] = (adblPredictorOrdinate[i + 1] - adblPredictorOrdinate[i]) *
- (adblResponseValue[i] - adblResponseValue[i - 1]) / (adblPredictorOrdinate[i] -
- adblPredictorOrdinate[i - 1]);
- adblBesselC1[i] += (adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 1]) *
- (adblResponseValue[i + 1] - adblResponseValue[i]) / (adblPredictorOrdinate[i + 1] -
- adblPredictorOrdinate[i]);
- adblBesselC1[i] /= (adblPredictorOrdinate[iNumResponse - 1] -
- adblPredictorOrdinate[iNumResponse - 3]);
- }
- }
- return adblBesselC1;
- }
- /**
- * Generate a Hyman83 C1 Array from the specified Array of Predictor Ordinates and the Response Values
- *
- * Hyman (1983) Accurate Monotonicity Preserving Cubic Interpolation -
- * SIAM J on Numerical Analysis 4 (4), 645-654.
- *
- * @param adblPredictorOrdinate The Predictor Ordinate Array
- * @param adblResponseValue The Response Value Array
- *
- * @return The C1 Array
- */
- public static final double[] Hyman83C1 (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue)
- {
- int iNumResponse = adblResponseValue.length;
- double dblLinearSlopePrev = java.lang.Double.NaN;
- double[] adblHyman83C1 = new double[iNumResponse];
- for (int i = 0; i < iNumResponse; ++i) {
- adblHyman83C1[i] = 0.;
- double dblLinearSlope = iNumResponse - 1 != i ? (adblResponseValue[i + 1] - adblResponseValue[i])
- / (adblPredictorOrdinate[i + 1] - adblPredictorOrdinate[i]) : java.lang.Double.NaN;
- if (0 != i && iNumResponse - 1 != i) {
- double dblMonotoneIndicator = dblLinearSlopePrev * dblLinearSlope;
- if (0. <= dblMonotoneIndicator)
- adblHyman83C1[i] = 3. * dblMonotoneIndicator / (java.lang.Math.max (dblLinearSlope,
- dblLinearSlopePrev) + 2. * java.lang.Math.min (dblLinearSlope, dblLinearSlopePrev));
- }
- dblLinearSlopePrev = dblLinearSlope;
- }
- return adblHyman83C1;
- }
- /**
- * Generate a Hyman89 C1 Array from the specified Array of Predictor Ordinates and the Response Values
- *
- * Doherty, Edelman, and Hyman (1989) Non-negative, monotonic, or convexity preserving cubic and quintic
- * Hermite interpolation - Mathematics of Computation 52 (186), 471-494.
- *
- * @param adblPredictorOrdinate The Predictor Ordinate Array
- * @param adblResponseValue The Response Value Array
- *
- * @return The C1 Array
- */
- public static final double[] Hyman89C1 (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue)
- {
- int iNumResponse = adblResponseValue.length;
- double[] adblHyman89C1 = new double[iNumResponse];
- double[] adblNodeC1 = LinearC1 (adblPredictorOrdinate, adblResponseValue);
- double[] adblBesselC1 = BesselC1 (adblPredictorOrdinate, adblResponseValue);
- for (int i = 0; i < iNumResponse; ++i) {
- if (i < 2 || i >= iNumResponse - 2)
- adblHyman89C1[i] = adblBesselC1[i];
- else {
- double dMuMinus = (adblNodeC1[i - 1] * (2. * (adblPredictorOrdinate[i] -
- adblPredictorOrdinate[i - 1]) + adblPredictorOrdinate[i - 1] -
- adblPredictorOrdinate[i - 2]) - adblNodeC1[i - 2] * (adblPredictorOrdinate[i] -
- adblPredictorOrdinate[i - 1])) / (adblPredictorOrdinate[i] -
- adblPredictorOrdinate[i - 2]);
- double dMu0 = (adblNodeC1[i - 1] * (adblPredictorOrdinate[i + 1] - adblPredictorOrdinate[i])
- + adblNodeC1[i] * (adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 1])) /
- (adblPredictorOrdinate[i + 1] - adblPredictorOrdinate[i - 1]);
- double dMuPlus = (adblNodeC1[i] * (2. * (adblPredictorOrdinate[i + 1] -
- adblPredictorOrdinate[i]) + adblPredictorOrdinate[i + 2] - adblPredictorOrdinate[i + 1])
- - adblNodeC1[i + 1] * (adblPredictorOrdinate[i + 1] - adblPredictorOrdinate[i])) /
- (adblPredictorOrdinate[i + 2] - adblPredictorOrdinate[i]);
- try {
- double dblM = 3 * org.drip.numerical.common.NumberUtil.Minimum (new double[]
- {java.lang.Math.abs (adblNodeC1[i - 1]), java.lang.Math.abs (adblNodeC1[i]),
- java.lang.Math.abs (dMu0), java.lang.Math.abs (dMuPlus)});
- if (!org.drip.numerical.common.NumberUtil.SameSign (new double[] {dMu0, dMuMinus,
- adblNodeC1[i - 1] - adblNodeC1[i - 2], adblNodeC1[i] - adblNodeC1[i - 1]}))
- dblM = java.lang.Math.max (dblM, 1.5 * java.lang.Math.min (java.lang.Math.abs (dMu0),
- java.lang.Math.abs (dMuMinus)));
- else if (!org.drip.numerical.common.NumberUtil.SameSign (new double[] {-dMu0, -dMuPlus,
- adblNodeC1[i] - adblNodeC1[i - 1], adblNodeC1[i + 1] - adblNodeC1[i]}))
- dblM = java.lang.Math.max (dblM, 1.5 * java.lang.Math.min (java.lang.Math.abs (dMu0),
- java.lang.Math.abs (dMuPlus)));
- adblHyman89C1[i] = 0.;
- if (adblBesselC1[i] * dMu0 > 0.)
- adblHyman89C1[i] = adblBesselC1[i] / java.lang.Math.abs (adblBesselC1[i]) *
- java.lang.Math.min (java.lang.Math.abs (adblBesselC1[i]), dblM);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- }
- }
- return adblHyman89C1;
- }
- /**
- * Generate a Harmonic C1 Array from the specified Array of Predictor Ordinates and the Response Values
- *
- * Fritcsh and Butland (1984) A Method for constructing local monotonic piece-wise cubic interpolants -
- * SIAM J on Scientific and Statistical Computing 5, 300-304.
- *
- * @param adblPredictorOrdinate The Predictor Ordinate Array
- * @param adblResponseValue The Response Value Array
- *
- * @return The C1 Array
- */
- public static final double[] HarmonicC1 (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue)
- {
- int iNumResponse = adblResponseValue.length;
- double[] adblHarmonicC1 = new double[iNumResponse];
- double[] adblLinearC1 = LinearC1 (adblPredictorOrdinate, adblResponseValue);
- for (int i = 0; i < iNumResponse; ++i) {
- if (0 == i) {
- adblHarmonicC1[i] = (adblPredictorOrdinate[2] + adblPredictorOrdinate[1] - 2. *
- adblPredictorOrdinate[0]) * adblLinearC1[0] / (adblPredictorOrdinate[2] -
- adblPredictorOrdinate[0]);
- adblHarmonicC1[i] -= (adblPredictorOrdinate[1] - adblPredictorOrdinate[0]) * adblLinearC1[1]
- / (adblPredictorOrdinate[2] - adblPredictorOrdinate[0]);
- } else if (iNumResponse - 1 == i) {
- adblHarmonicC1[i] = -(adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 1]) *
- adblLinearC1[i - 2] / (adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 2]);
- adblHarmonicC1[i] += (2. * adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 1] -
- adblPredictorOrdinate[i - 2]) * adblLinearC1[i - 1] / (adblPredictorOrdinate[i] -
- adblPredictorOrdinate[i - 2]);
- } else {
- if (adblLinearC1[i - 1] * adblLinearC1[i] <= 0.)
- adblHarmonicC1[i] = 0.;
- else {
- adblHarmonicC1[i] = (adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 1] + 2. *
- (adblPredictorOrdinate[i + 1] - adblPredictorOrdinate[i])) / (3. *
- (adblPredictorOrdinate[i + 1] - adblPredictorOrdinate[i])) / adblLinearC1[i - 1];
- adblHarmonicC1[i] += (adblPredictorOrdinate[i + 1] - adblPredictorOrdinate[i] + 2. *
- (adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 1])) / (3. *
- (adblPredictorOrdinate[i + 1] - adblPredictorOrdinate[i])) / adblLinearC1[i];
- adblHarmonicC1[i] = 1. / adblHarmonicC1[i];
- }
- }
- }
- return adblHarmonicC1;
- }
- /**
- * Generate a Van Leer Limiter C1 Array from the specified Array of Predictor Ordinates and the Response
- * Values.
- *
- * Van Leer (1974) Towards the Ultimate Conservative Difference Scheme. II - Monotonicity and
- * Conservation combined in a Second-Order Scheme, Journal of Computational Physics 14 (4), 361-370.
- *
- * @param adblPredictorOrdinate The Predictor Ordinate Array
- * @param adblResponseValue The Response Value Array
- *
- * @return The C1 Array
- */
- public static final double[] VanLeerLimiterC1 (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue)
- {
- int iNumResponse = adblResponseValue.length;
- double[] dblVanLeerLimiterC1 = new double[iNumResponse];
- double[] adblNodeC1 = LinearC1 (adblPredictorOrdinate, adblResponseValue);
- for (int i = 0; i < iNumResponse; ++i) {
- if (0 == i) {
- dblVanLeerLimiterC1[i] = (adblPredictorOrdinate[2] + adblPredictorOrdinate[1] - 2. *
- adblPredictorOrdinate[0]) * adblNodeC1[0] / (adblPredictorOrdinate[2] -
- adblPredictorOrdinate[0]);
- dblVanLeerLimiterC1[i] -= (adblPredictorOrdinate[1] - adblPredictorOrdinate[0]) *
- adblNodeC1[1] / (adblPredictorOrdinate[2] - adblPredictorOrdinate[0]);
- } else if (iNumResponse - 1 == i) {
- dblVanLeerLimiterC1[i] = -(adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 1]) *
- adblNodeC1[i - 2] / (adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 2]);
- dblVanLeerLimiterC1[i] += (2. * adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 1] -
- adblPredictorOrdinate[i - 2]) * adblNodeC1[i - 1] / (adblPredictorOrdinate[i] -
- adblPredictorOrdinate[i - 2]);
- } else {
- if (0. != adblNodeC1[i - 1]) {
- double dblR = adblNodeC1[i] / adblNodeC1[i - 1];
- double dblRAbsolute = java.lang.Math.abs (dblR);
- dblVanLeerLimiterC1[i] = adblNodeC1[i] * (dblR + dblRAbsolute) / (1. + dblRAbsolute);
- } else if (0. >= adblNodeC1[i])
- dblVanLeerLimiterC1[i] = 0.;
- else if (0. < adblNodeC1[i])
- dblVanLeerLimiterC1[i] = 2. * adblNodeC1[i];
- }
- }
- return dblVanLeerLimiterC1;
- }
- /**
- * Generate a Huynh Le Floch Limiter C1 Array from the specified Array of Predictor Ordinates and the
- * Response Values.
- *
- * Huynh (1993) Accurate Monotone Cubic Interpolation, SIAM J on Numerical Analysis 30 (1), 57-100.
- *
- * @param adblPredictorOrdinate The Predictor Ordinate Array
- * @param adblResponseValue The Response Value Array
- *
- * @return The C1 Array
- */
- public static final double[] HuynhLeFlochLimiterC1 (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue)
- {
- int iNumResponse = adblResponseValue.length;
- double[] adblHuynhLeFlochLimiterC1 = new double[iNumResponse];
- double[] adblNodeC1 = LinearC1 (adblPredictorOrdinate, adblResponseValue);
- for (int i = 0; i < iNumResponse; ++i) {
- if (0 == i) {
- adblHuynhLeFlochLimiterC1[i] = (adblPredictorOrdinate[2] + adblPredictorOrdinate[1] - 2. *
- adblPredictorOrdinate[0]) * adblNodeC1[0] / (adblPredictorOrdinate[2] -
- adblPredictorOrdinate[0]);
- adblHuynhLeFlochLimiterC1[i] -= (adblPredictorOrdinate[1] - adblPredictorOrdinate[0]) *
- adblNodeC1[1] / (adblPredictorOrdinate[2] - adblPredictorOrdinate[0]);
- } else if (iNumResponse - 1 == i) {
- adblHuynhLeFlochLimiterC1[i] = -(adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 1]) *
- adblNodeC1[i - 2] / (adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 2]);
- adblHuynhLeFlochLimiterC1[i] += (2. * adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 1]
- - adblPredictorOrdinate[i - 2]) * adblNodeC1[i - 1] / (adblPredictorOrdinate[i] -
- adblPredictorOrdinate[i - 2]);
- } else {
- double dblMonotoneIndicator = adblNodeC1[i] * adblNodeC1[i - 1];
- if (0. < dblMonotoneIndicator)
- adblHuynhLeFlochLimiterC1[i] = 3. * dblMonotoneIndicator * (adblNodeC1[i] +
- adblNodeC1[i - 1]) / (adblNodeC1[i] * adblNodeC1[i] + adblNodeC1[i - 1] *
- adblNodeC1[i - 1] * 4. * dblMonotoneIndicator);
- else
- adblHuynhLeFlochLimiterC1[i] = 0.;
- }
- }
- return adblHuynhLeFlochLimiterC1;
- }
- /**
- * Generate a Kruger C1 Array from the specified Array of Predictor Ordinates and the Response Values.
- *
- * Kruger (2002) Constrained Cubic Spline Interpolations for Chemical Engineering Application,
- * http://www.korf.co.uk/spline.pdf
- *
- * @param adblPredictorOrdinate The Predictor Ordinate Array
- * @param adblResponseValue The Response Value Array
- *
- * @return The C1 Array
- */
- public static final double[] KrugerC1 (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue)
- {
- int iNumResponse = adblResponseValue.length;
- double[] adblKrugerSlope = new double[iNumResponse];
- double[] adblSlopeC1 = LinearC1 (adblPredictorOrdinate, adblResponseValue);
- if (null == adblSlopeC1 || adblSlopeC1.length != iNumResponse - 1) return null;
- for (int i = 0; i < iNumResponse; ++i) {
- if (0 != i && iNumResponse - 1 != i) {
- if (adblSlopeC1[i - 1] * adblSlopeC1[i] <= 0.)
- adblKrugerSlope[i] = 0.;
- else
- adblKrugerSlope[i] = 2. / ((1. / adblSlopeC1[i - 1]) + (1. / adblSlopeC1[i]));
- }
- }
- adblKrugerSlope[0] = 3.5 * adblSlopeC1[0] - 0.5 * adblKrugerSlope[1];
- adblKrugerSlope[iNumResponse - 1] = 3.5 * adblSlopeC1[iNumResponse - 2] - 0.5 *
- adblKrugerSlope[iNumResponse - 2];
- return adblKrugerSlope;
- }
- /**
- * Generate a Akima C1 Array from the specified Array of Predictor Ordinates and the Response Values.
- *
- * Akima (1970): A New Method of Interpolation and Smooth Curve Fitting based on Local Procedures,
- * Journal of the Association for the Computing Machinery 17 (4), 589-602.
- *
- * @param adblPredictorOrdinate The Predictor Ordinate Array
- * @param adblResponseValue The Response Value Array
- *
- * @return The C1 Array
- */
- public static final double[] AkimaC1 (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue)
- {
- org.drip.spline.pchip.AkimaLocalC1Generator alcr =
- org.drip.spline.pchip.AkimaLocalC1Generator.Create (adblPredictorOrdinate, adblResponseValue);
- return null == alcr ? null : alcr.C1();
- }
- /**
- * Verify if the given Quintic Polynomial is Monotone using the Hyman89 Algorithm
- *
- * Doherty, Edelman, and Hyman (1989) Non-negative, monotonic, or convexity preserving cubic and quintic
- * Hermite interpolation - Mathematics of Computation 52 (186), 471-494.
- *
- * @param adblPredictorOrdinate Array of Predictor Ordinates
- * @param adblResponseValue Array of Response Values
- * @param adblFirstDerivative Array of First Derivatives
- * @param adblSecondDerivative Array of Second Derivatives
- *
- * @return TRUE - The given Quintic Polynomial is Monotone
- *
- * @throws java.lang.Exception Thrown if the Monotonicity cannot be determined
- */
- public static final boolean VerifyHyman89QuinticMonotonicity (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue,
- final double[] adblFirstDerivative,
- final double[] adblSecondDerivative)
- throws java.lang.Exception
- {
- if (null == adblPredictorOrdinate || null == adblResponseValue || null == adblFirstDerivative || null
- == adblSecondDerivative)
- throw new java.lang.Exception
- ("LocalMonotoneCkGenerator::VerifyHyman89QuinticMonotonicity => Invalid Inputs");
- int iNumPredictor = adblPredictorOrdinate.length;
- if (1 >= iNumPredictor || iNumPredictor != adblResponseValue.length || iNumPredictor !=
- adblResponseValue.length || iNumPredictor != adblResponseValue.length)
- throw new java.lang.Exception
- ("LocalMonotoneCkGenerator::VerifyHyman89QuinticMonotonicity => Invalid Inputs");
- for (int i = 1; i < iNumPredictor - 1; ++i) {
- double dblAbsoluteResponseValue = java.lang.Math.abs (adblResponseValue[i]);
- double dblResponseValueSign = adblResponseValue[i] > 0. ? 1. : -1.;
- double dblHMinus = (adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 1]);
- double dblHPlus = (adblPredictorOrdinate[i + 1] - adblPredictorOrdinate[i]);
- if (-5. * dblAbsoluteResponseValue / dblHPlus > dblResponseValueSign * adblFirstDerivative[i] ||
- 5. * dblAbsoluteResponseValue / dblHMinus < dblResponseValueSign * adblFirstDerivative[i])
- return false;
- if (dblResponseValueSign * adblSecondDerivative[i] < dblResponseValueSign * java.lang.Math.max
- (8. * adblFirstDerivative[i] / dblHMinus - 20. * adblResponseValue[i] / dblHMinus /
- dblHMinus, -8. * adblFirstDerivative[i] / dblHPlus - 20. * adblResponseValue[i] /
- dblHPlus / dblHPlus))
- return false;
- }
- return true;
- }
- /**
- * Generate C1 Slope Quintic Polynomial is Monotone using the Hyman89 Algorithm
- *
- * Doherty, Edelman, and Hyman (1989) Non-negative, monotonic, or convexity preserving cubic and quintic
- * Hermite interpolation - Mathematics of Computation 52 (186), 471-494.
- *
- * @param adblPredictorOrdinate Array of Predictor Ordinates
- * @param adblResponseValue Array of Response Values
- * @param adblFirstDerivative Array of First Derivatives
- * @param adblSecondDerivative Array of Second Derivatives
- *
- * @return The C1 Slope Quintic Stretch
- */
- public static final double[] Hyman89QuinticMonotoneC1 (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue,
- final double[] adblFirstDerivative,
- final double[] adblSecondDerivative)
- {
- if (null == adblPredictorOrdinate || null == adblResponseValue || null == adblFirstDerivative || null
- == adblSecondDerivative)
- return null;
- int iNumPredictor = adblPredictorOrdinate.length;
- if (1 >= iNumPredictor || iNumPredictor != adblResponseValue.length || iNumPredictor !=
- adblResponseValue.length || iNumPredictor != adblResponseValue.length)
- return null;
- double[] adblAdjFirstDerivative = new double[iNumPredictor];
- double[] adblNodeC1 = LinearC1 (adblPredictorOrdinate, adblResponseValue);
- double[] adblBesselC1 = BesselC1 (adblPredictorOrdinate, adblResponseValue);
- for (int i = 0; i < iNumPredictor; ++i) {
- if (i < 2 || i >= iNumPredictor - 2)
- adblAdjFirstDerivative[i] = adblBesselC1[i];
- else {
- double dblSign = 0.;
- double dblHMinus = (adblPredictorOrdinate[i] - adblPredictorOrdinate[i - 1]);
- double dblHPlus = (adblPredictorOrdinate[i + 1] - adblPredictorOrdinate[i]);
- if (adblFirstDerivative[i - 1] * adblFirstDerivative[i] < 0.)
- dblSign = adblResponseValue[i] > 0. ? 1. : -1.;
- double dblMinSlope = java.lang.Math.min (java.lang.Math.abs (adblFirstDerivative[i - 1]),
- java.lang.Math.abs (adblFirstDerivative[i]));
- if (dblSign >= 0.)
- adblAdjFirstDerivative[i] = java.lang.Math.min (java.lang.Math.max (0.,
- adblFirstDerivative[i]), 5. * dblMinSlope);
- else
- adblAdjFirstDerivative[i] = java.lang.Math.max (java.lang.Math.min (0.,
- adblFirstDerivative[i]), -5. * dblMinSlope);
- double dblA = java.lang.Math.max (0., adblAdjFirstDerivative[i] / adblNodeC1[i - 1]);
- double dblB = java.lang.Math.max (0., adblAdjFirstDerivative[i + 1] / adblNodeC1[i]);
- double dblDPlus = adblAdjFirstDerivative[i] * adblNodeC1[i] > 0. ? adblAdjFirstDerivative[i]
- : 0.;
- double dblDMinus = adblAdjFirstDerivative[i] * adblNodeC1[i - 1] > 0. ?
- adblAdjFirstDerivative[i] : 0.;
- double dblALeft = (-7.9 * dblDPlus - 0.26 * dblDPlus * dblB) / dblHPlus;
- double dblARight = ((20. - 2. * dblB) * adblNodeC1[i] - 8. * dblDPlus - 0.48 * dblDPlus *
- dblB) / dblHPlus;
- double dblBLeft = ((2. * dblA - 20.) * adblNodeC1[i - 1] + 8. * dblDMinus - 0.48 * dblDMinus
- * dblA) / dblHMinus;
- double dblBRight = (7.9 * dblDMinus + 0.26 * dblDMinus * dblA) / dblHMinus;
- if (dblARight <= dblBLeft || dblALeft >= dblBRight) {
- double dblDenom = ((8. + 0.48 * dblB) / dblHPlus) + ((8. + 0.48 * dblA) / dblHMinus);
- adblAdjFirstDerivative[i] = (20. - 2. * dblB) * adblNodeC1[i] / dblHPlus;
- adblAdjFirstDerivative[i] += (20. - 2. * dblA) * adblNodeC1[i - 1] / dblHMinus;
- adblAdjFirstDerivative[i] /= dblDenom;
- }
- }
- }
- return adblAdjFirstDerivative;
- }
- /**
- * Generate the Local Control Stretch in accordance with the desired Customization Parameters
- *
- * @param adblPredictorOrdinate The Predictor Ordinate Array
- * @param adblResponseValue The Response Value Array
- * @param strGeneratorType The C1 Generator Type
- * @param bEliminateSpuriousExtrema TRUE - Eliminate Spurious Extrema
- * @param bApplyMonotoneFilter TRUE - Apply Monotone Filter
- *
- * @return Instance of the Local Control Stretch
- */
- public static final LocalMonotoneCkGenerator Create (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue,
- final java.lang.String strGeneratorType,
- final boolean bEliminateSpuriousExtrema,
- final boolean bApplyMonotoneFilter)
- {
- try {
- LocalMonotoneCkGenerator lcr = new LocalMonotoneCkGenerator (adblPredictorOrdinate,
- adblResponseValue);
- if (!lcr.generateC1 (strGeneratorType)) return null;
- if (bEliminateSpuriousExtrema && !lcr.eliminateSpuriousExtrema()) return null;
- if (bApplyMonotoneFilter) {
- if (!lcr.applyMonotoneFilter()) return null;
- }
- return lcr;
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * Generate the Local Control Stretch in accordance with the desired Customization Parameters
- *
- * @param aiPredictorOrdinate The Predictor Ordinate Array
- * @param adblResponseValue The Response Value Array
- * @param strGeneratorType The C1 Generator Type
- * @param bEliminateSpuriousExtrema TRUE - Eliminate Spurious Extrema
- * @param bApplyMonotoneFilter TRUE - Apply Monotone Filter
- *
- * @return Instance of the Local Control Stretch
- */
- public static final LocalMonotoneCkGenerator Create (
- final int[] aiPredictorOrdinate,
- final double[] adblResponseValue,
- final java.lang.String strGeneratorType,
- final boolean bEliminateSpuriousExtrema,
- final boolean bApplyMonotoneFilter)
- {
- if (null == aiPredictorOrdinate) return null;
- int iNumPredictorOrdinate = aiPredictorOrdinate.length;
- double[] adblPredictorOrdinate = new double[iNumPredictorOrdinate];
- if (0 == iNumPredictorOrdinate) return null;
- for (int i = 0; i < iNumPredictorOrdinate; ++i)
- adblPredictorOrdinate[i] = aiPredictorOrdinate[i];
- return Create (adblPredictorOrdinate, adblResponseValue, strGeneratorType, bEliminateSpuriousExtrema,
- bApplyMonotoneFilter);
- }
- private LocalMonotoneCkGenerator (
- final double[] adblPredictorOrdinate,
- final double[] adblResponseValue)
- throws java.lang.Exception
- {
- if (null == (_adblPredictorOrdinate = adblPredictorOrdinate) || null == (_adblResponseValue =
- adblResponseValue))
- throw new java.lang.Exception ("LocalMonotoneCkGenerator ctr: Invalid Inputs!");
- int iSize = _adblPredictorOrdinate.length;
- if (0 == iSize || iSize != _adblResponseValue.length)
- throw new java.lang.Exception ("LocalMonotoneCkGenerator ctr: Invalid Inputs!");
- }
- private boolean generateC1 (
- final java.lang.String strGeneratorType)
- {
- if (null == strGeneratorType || strGeneratorType.isEmpty()) return false;
- if (C1_AKIMA.equalsIgnoreCase (strGeneratorType))
- return null != (_adblC1 = AkimaC1 (_adblPredictorOrdinate, _adblResponseValue)) && 0 !=
- _adblC1.length;
- if (C1_BESSEL.equalsIgnoreCase (strGeneratorType))
- return null != (_adblC1 = BesselC1 (_adblPredictorOrdinate, _adblResponseValue)) && 0 !=
- _adblC1.length;
- if (C1_HARMONIC.equalsIgnoreCase (strGeneratorType))
- return null != (_adblC1 = HarmonicC1 (_adblPredictorOrdinate, _adblResponseValue)) && 0 !=
- _adblC1.length;
- if (C1_HUYNH_LE_FLOCH.equalsIgnoreCase (strGeneratorType))
- return null != (_adblC1 = HuynhLeFlochLimiterC1 (_adblPredictorOrdinate, _adblResponseValue)) &&
- 0 != _adblC1.length;
- if (C1_HYMAN83.equalsIgnoreCase (strGeneratorType))
- return null != (_adblC1 = Hyman83C1 (_adblPredictorOrdinate, _adblResponseValue)) && 0 !=
- _adblC1.length;
- if (C1_HYMAN89.equalsIgnoreCase (strGeneratorType))
- return null != (_adblC1 = Hyman89C1 (_adblPredictorOrdinate, _adblResponseValue)) && 0 !=
- _adblC1.length;
- if (C1_KRUGER.equalsIgnoreCase (strGeneratorType))
- return null != (_adblC1 = KrugerC1 (_adblPredictorOrdinate, _adblResponseValue)) && 0 !=
- _adblC1.length;
- if (C1_MONOTONE_CONVEX.equalsIgnoreCase (strGeneratorType))
- return null != (_adblC1 = BesselC1 (_adblPredictorOrdinate, _adblResponseValue)) && 0 !=
- _adblC1.length;
- if (C1_VANILLA.equalsIgnoreCase (strGeneratorType))
- return null != (_adblC1 = LinearC1 (_adblPredictorOrdinate, _adblResponseValue)) && 0 !=
- _adblC1.length;
- if (C1_VAN_LEER.equalsIgnoreCase (strGeneratorType))
- return null != (_adblC1 = VanLeerLimiterC1 (_adblPredictorOrdinate, _adblResponseValue)) && 0 !=
- _adblC1.length;
- return false;
- }
- private boolean eliminateSpuriousExtrema()
- {
- return null != (_adblC1 = EliminateSpuriousExtrema (_adblC1, LinearC1 (_adblPredictorOrdinate,
- _adblResponseValue))) && 0 != _adblC1.length;
- }
- private boolean applyMonotoneFilter()
- {
- return null != (_adblC1 = ApplyMonotoneFilter (_adblC1, LinearC1 (_adblPredictorOrdinate,
- _adblResponseValue))) && 0 != _adblC1.length;
- }
- /**
- * Retrieve the C1 Array
- *
- * @return The C1 Array
- */
- public double[] C1()
- {
- return _adblC1;
- }
- }