MonotoneConvexHaganWest.java
- package org.drip.spline.pchip;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- * Copyright (C) 2016 Lakshmi Krishnamurthy
- * Copyright (C) 2015 Lakshmi Krishnamurthy
- * Copyright (C) 2014 Lakshmi Krishnamurthy
- * Copyright (C) 2013 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>MonotoneConvexHaganWest</i> implements the regime using the Hagan and West (2006) Estimator. It
- * provides the following functionality:
- *
- * <br><br>
- * <ul>
- * <li>
- * Static Method to Create an instance of MonotoneConvexHaganWest
- * </li>
- * <li>
- * Ensure that the estimated regime is monotone an convex
- * </li>
- * <li>
- * If need be, enforce positivity and/or apply amelioration
- * </li>
- * <li>
- * Apply segment-by-segment range bounds as needed
- * </li>
- * <li>
- * Retrieve predictor ordinates/response values
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/SplineBuilderLibrary.md">Spline Builder Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spline/README.md">Basis Splines and Linear Compounders across a Broad Family of Spline Basis Functions</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/spline/pchip/README.md">Monotone Convex Themed PCHIP Splines</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class MonotoneConvexHaganWest extends org.drip.function.definition.R1ToR1 {
- private double[] _adblObservation = null;
- private double[] _adblResponseValue = null;
- private boolean _bLinearNodeInference = true;
- private double[] _adblPredictorOrdinate = null;
- private double[] _adblResponseZScoreLeft = null;
- private double[] _adblResponseZScoreRight = null;
- private org.drip.function.definition.R1ToR1[] _aAU = null;
- class Case1Univariate extends org.drip.function.definition.R1ToR1 {
- private double _dblResponseZScoreLeft = java.lang.Double.NaN;
- private double _dblResponseZScoreRight = java.lang.Double.NaN;
- private double _dblPredictorOrdinateLeft = java.lang.Double.NaN;
- private double _dblPredictorOrdinateRight = java.lang.Double.NaN;
- Case1Univariate (
- final double dblPredictorOrdinateLeft,
- final double dblPredictorOrdinateRight,
- final double dblResponseZScoreLeft,
- final double dblResponseZScoreRight)
- {
- super (null);
- _dblResponseZScoreLeft = dblResponseZScoreLeft;
- _dblResponseZScoreRight = dblResponseZScoreRight;
- _dblPredictorOrdinateLeft = dblPredictorOrdinateLeft;
- _dblPredictorOrdinateRight = dblPredictorOrdinateRight;
- }
- @Override public double evaluate (
- final double dblPredictorOrdinate)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblPredictorOrdinate) || dblPredictorOrdinate <
- _dblPredictorOrdinateLeft || dblPredictorOrdinate > _dblPredictorOrdinateRight)
- throw new java.lang.Exception ("Case1Univariate::evaluate => Invalid Inputs");
- double dblX = (dblPredictorOrdinate - _dblPredictorOrdinateLeft) / (_dblPredictorOrdinateRight -
- _dblPredictorOrdinateLeft);
- return _dblResponseZScoreLeft * (1. - 4. * dblX + 3. * dblX * dblX) + _dblResponseZScoreRight *
- (-2. * dblX + 3. * dblX * dblX);
- }
- @Override public double integrate (
- final double dblBegin,
- final double dblEnd)
- throws java.lang.Exception
- {
- return org.drip.numerical.integration.R1ToR1Integrator.Boole (this, dblBegin, dblEnd);
- }
- }
- class Case2Univariate extends org.drip.function.definition.R1ToR1 {
- private double _dblEta = java.lang.Double.NaN;
- private double _dblResponseZScoreLeft = java.lang.Double.NaN;
- private double _dblResponseZScoreRight = java.lang.Double.NaN;
- private double _dblPredictorOrdinateLeft = java.lang.Double.NaN;
- private double _dblPredictorOrdinateRight = java.lang.Double.NaN;
- Case2Univariate (
- final double dblPredictorOrdinateLeft,
- final double dblPredictorOrdinateRight,
- final double dblResponseZScoreLeft,
- final double dblResponseZScoreRight)
- {
- super (null);
- _dblResponseZScoreLeft = dblResponseZScoreLeft;
- _dblResponseZScoreRight = dblResponseZScoreRight;
- _dblPredictorOrdinateLeft = dblPredictorOrdinateLeft;
- _dblPredictorOrdinateRight = dblPredictorOrdinateRight;
- _dblEta = _dblResponseZScoreLeft != _dblResponseZScoreRight ? (_dblResponseZScoreRight + 2. *
- _dblResponseZScoreLeft) / (_dblResponseZScoreRight - _dblResponseZScoreLeft) : 0.;
- }
- @Override public double evaluate (
- final double dblPredictorOrdinate)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblPredictorOrdinate) || dblPredictorOrdinate <
- _dblPredictorOrdinateLeft || dblPredictorOrdinate > _dblPredictorOrdinateRight)
- throw new java.lang.Exception ("Case2Univariate::evaluate => Invalid Inputs");
- if (_dblResponseZScoreLeft == _dblResponseZScoreRight) return _dblResponseZScoreRight;
- double dblX = (dblPredictorOrdinate - _dblPredictorOrdinateLeft) / (_dblPredictorOrdinateRight -
- _dblPredictorOrdinateLeft);
- return dblX <= _dblEta ? _dblResponseZScoreLeft : _dblResponseZScoreLeft +
- (_dblResponseZScoreRight - _dblResponseZScoreLeft) * (dblX - _dblEta) * (dblX - _dblEta) /
- (1. - _dblEta) / (1. - _dblEta);
- }
- @Override public double integrate (
- final double dblBegin,
- final double dblEnd)
- throws java.lang.Exception
- {
- return org.drip.numerical.integration.R1ToR1Integrator.Boole (this, dblBegin, dblEnd);
- }
- }
- class Case3Univariate extends org.drip.function.definition.R1ToR1 {
- private double _dblEta = java.lang.Double.NaN;
- private double _dblResponseZScoreLeft = java.lang.Double.NaN;
- private double _dblResponseZScoreRight = java.lang.Double.NaN;
- private double _dblPredictorOrdinateLeft = java.lang.Double.NaN;
- private double _dblPredictorOrdinateRight = java.lang.Double.NaN;
- Case3Univariate (
- final double dblPredictorOrdinateLeft,
- final double dblPredictorOrdinateRight,
- final double dblResponseZScoreLeft,
- final double dblResponseZScoreRight)
- {
- super (null);
- _dblResponseZScoreLeft = dblResponseZScoreLeft;
- _dblResponseZScoreRight = dblResponseZScoreRight;
- _dblPredictorOrdinateLeft = dblPredictorOrdinateLeft;
- _dblPredictorOrdinateRight = dblPredictorOrdinateRight;
- _dblEta = _dblResponseZScoreLeft != _dblResponseZScoreRight ? 3. * _dblResponseZScoreRight /
- (_dblResponseZScoreRight - _dblResponseZScoreLeft) : 0.;
- }
- @Override public double evaluate (
- final double dblPredictorOrdinate)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblPredictorOrdinate) || dblPredictorOrdinate <
- _dblPredictorOrdinateLeft || dblPredictorOrdinate > _dblPredictorOrdinateRight)
- throw new java.lang.Exception ("Case3Univariate::evaluate => Invalid Inputs");
- if (_dblResponseZScoreLeft == _dblResponseZScoreRight) return _dblResponseZScoreRight;
- double dblX = (dblPredictorOrdinate - _dblPredictorOrdinateLeft) / (_dblPredictorOrdinateRight -
- _dblPredictorOrdinateLeft);
- return dblX < _dblEta ? _dblResponseZScoreLeft + (_dblResponseZScoreLeft -
- _dblResponseZScoreRight) * (_dblEta - dblX) * (_dblEta - dblX) / _dblEta / _dblEta :
- _dblResponseZScoreRight;
- }
- @Override public double integrate (
- final double dblBegin,
- final double dblEnd)
- throws java.lang.Exception
- {
- return org.drip.numerical.integration.R1ToR1Integrator.Boole (this, dblBegin, dblEnd);
- }
- }
- class Case4Univariate extends org.drip.function.definition.R1ToR1 {
- private double _dblA = java.lang.Double.NaN;
- private double _dblEta = java.lang.Double.NaN;
- private double _dblResponseZScoreLeft = java.lang.Double.NaN;
- private double _dblResponseZScoreRight = java.lang.Double.NaN;
- private double _dblPredictorOrdinateLeft = java.lang.Double.NaN;
- private double _dblPredictorOrdinateRight = java.lang.Double.NaN;
- Case4Univariate (
- final double dblPredictorOrdinateLeft,
- final double dblPredictorOrdinateRight,
- final double dblResponseZScoreLeft,
- final double dblResponseZScoreRight)
- {
- super (null);
- _dblResponseZScoreLeft = dblResponseZScoreLeft;
- _dblResponseZScoreRight = dblResponseZScoreRight;
- _dblPredictorOrdinateLeft = dblPredictorOrdinateLeft;
- _dblPredictorOrdinateRight = dblPredictorOrdinateRight;
- if (_dblResponseZScoreLeft != _dblResponseZScoreRight) {
- _dblEta = _dblResponseZScoreRight / (_dblResponseZScoreRight - _dblResponseZScoreLeft);
- _dblA = -1. * _dblResponseZScoreLeft * _dblResponseZScoreRight / (_dblResponseZScoreRight -
- _dblResponseZScoreLeft);
- } else {
- _dblA = 0.;
- _dblEta = 0.;
- }
- }
- @Override public double evaluate (
- final double dblPredictorOrdinate)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (dblPredictorOrdinate) || dblPredictorOrdinate <
- _dblPredictorOrdinateLeft || dblPredictorOrdinate > _dblPredictorOrdinateRight)
- throw new java.lang.Exception ("Case4Univariate::evaluate => Invalid Inputs");
- if (_dblResponseZScoreLeft == _dblResponseZScoreRight) return _dblResponseZScoreRight;
- double dblX = (dblPredictorOrdinate - _dblPredictorOrdinateLeft) / (_dblPredictorOrdinateRight -
- _dblPredictorOrdinateLeft);
- return dblX < _dblEta ? _dblA + (_dblResponseZScoreLeft - _dblA) * (_dblEta - dblX) * (_dblEta -
- dblX) / _dblEta / _dblEta : _dblA + (_dblResponseZScoreRight - _dblA) * (dblX - _dblEta) *
- (dblX - _dblEta) / (1. - _dblEta) / (1. - _dblEta);
- }
- @Override public double integrate (
- final double dblBegin,
- final double dblEnd)
- throws java.lang.Exception
- {
- return org.drip.numerical.integration.R1ToR1Integrator.Boole (this, dblBegin, dblEnd);
- }
- }
- /**
- * Create an instance of MonotoneConvexHaganWest
- *
- * @param adblPredictorOrdinate Array of Predictor Ordinates
- * @param adblObservation Array of Observations
- * @param bLinearNodeInference Apply Linear Node Inference from Observations
- *
- * @return Instance of MonotoneConvexHaganWest
- */
- public static final MonotoneConvexHaganWest Create (
- final double[] adblPredictorOrdinate,
- final double[] adblObservation,
- final boolean bLinearNodeInference)
- {
- MonotoneConvexHaganWest mchw = null;
- try {
- mchw = new MonotoneConvexHaganWest (adblPredictorOrdinate, adblObservation,
- bLinearNodeInference);
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- return null;
- }
- return mchw.inferResponseValues() && mchw.inferResponseZScores() && mchw.generateUnivariate() ? mchw
- : null;
- }
- private MonotoneConvexHaganWest (
- final double[] adblPredictorOrdinate,
- final double[] adblObservation,
- final boolean bLinearNodeInference)
- throws java.lang.Exception
- {
- super (null);
- if (null == (_adblObservation = adblObservation) || null == (_adblPredictorOrdinate =
- adblPredictorOrdinate))
- throw new java.lang.Exception ("MonotoneConvexHaganWest ctr: Invalid Inputs!");
- _bLinearNodeInference = bLinearNodeInference;
- int iNumObservation = _adblObservation.length;
- if (1 >= iNumObservation || iNumObservation + 1 != _adblPredictorOrdinate.length)
- throw new java.lang.Exception ("MonotoneConvexHaganWest ctr: Invalid Inputs!");
- }
- private boolean inferResponseValues()
- {
- int iNumPredictorOrdinate = _adblPredictorOrdinate.length;
- _adblResponseValue = new double[iNumPredictorOrdinate];
- for (int i = 1; i < iNumPredictorOrdinate - 1; ++i) {
- if (_bLinearNodeInference)
- _adblResponseValue[i] = (_adblPredictorOrdinate[i] - _adblPredictorOrdinate[i - 1]) /
- (_adblPredictorOrdinate[i + 1] - _adblPredictorOrdinate[i - 1]) * _adblObservation[i] +
- (_adblPredictorOrdinate[i + 1] - _adblPredictorOrdinate[i]) /
- (_adblPredictorOrdinate[i + 1] - _adblPredictorOrdinate[i - 1]) *
- _adblObservation[i - 1];
- else {
- _adblResponseValue[i] = 0.;
- if (_adblObservation[i - 1] * _adblObservation[i] > 0.) {
- _adblResponseValue[i] = (_adblPredictorOrdinate[i] - _adblPredictorOrdinate[i - 1] + 2. *
- (_adblPredictorOrdinate[i + 1] - _adblPredictorOrdinate[i])) / (3. *
- (_adblPredictorOrdinate[i + 1] - _adblPredictorOrdinate[i])) /
- _adblObservation[i - 1];
- _adblResponseValue[i] += (_adblPredictorOrdinate[i + 1] - _adblPredictorOrdinate[i] + 2.
- * (_adblPredictorOrdinate[i] - _adblPredictorOrdinate[i - 1])) / (3. *
- (_adblPredictorOrdinate[i + 1] - _adblPredictorOrdinate[i])) /
- _adblObservation[i];
- _adblResponseValue[i] = 1. / _adblResponseValue[i];
- }
- }
- }
- _adblResponseValue[0] = _adblObservation[0] - 0.5 * (_adblResponseValue[1] - _adblObservation[0]);
- _adblResponseValue[iNumPredictorOrdinate - 1] = _adblObservation[iNumPredictorOrdinate - 2] - 0.5 *
- (_adblResponseValue[iNumPredictorOrdinate - 2] - _adblObservation[iNumPredictorOrdinate - 2]);
- return true;
- }
- private boolean inferResponseZScores()
- {
- int iNumSegment = _adblPredictorOrdinate.length - 1;
- _adblResponseZScoreLeft = new double[iNumSegment];
- _adblResponseZScoreRight = new double[iNumSegment];
- for (int i = 0; i < iNumSegment; ++i) {
- _adblResponseZScoreLeft[i] = _adblResponseValue[i] - _adblObservation[i];
- _adblResponseZScoreRight[i] = _adblResponseValue[i + 1] - _adblObservation[i];
- }
- return true;
- }
- private boolean generateUnivariate()
- {
- int iNumSegment = _adblPredictorOrdinate.length - 1;
- _aAU = new org.drip.function.definition.R1ToR1[iNumSegment];
- for (int i = 0; i < iNumSegment; ++i) {
- if ((_adblResponseZScoreLeft[i] > 0. && -0.5 * _adblResponseZScoreLeft[i] >=
- _adblResponseZScoreRight[i] && _adblResponseZScoreRight[i] >= -2. *
- _adblResponseZScoreLeft[i]) || (_adblResponseZScoreLeft[i] < 0. && -0.5 *
- _adblResponseZScoreLeft[i] <= _adblResponseZScoreRight[i] &&
- _adblResponseZScoreRight[i] <= -2. * _adblResponseZScoreLeft[i]))
- _aAU[i] = new Case1Univariate (_adblPredictorOrdinate[i], _adblPredictorOrdinate[i + 1],
- _adblResponseZScoreLeft[i], _adblResponseZScoreRight[i]);
- else if ((_adblResponseZScoreLeft[i] < 0. && _adblResponseZScoreRight[i] > -2. *
- _adblResponseZScoreLeft[i]) || (_adblResponseZScoreLeft[i] > 0. &&
- _adblResponseZScoreRight[i] < -2. * _adblResponseZScoreLeft[i]))
- _aAU[i] = new Case2Univariate (_adblPredictorOrdinate[i], _adblPredictorOrdinate[i + 1],
- _adblResponseZScoreLeft[i], _adblResponseZScoreRight[i]);
- else if ((_adblResponseZScoreLeft[i] > 0. && _adblResponseZScoreRight[i] > -0.5 *
- _adblResponseZScoreLeft[i]) || (_adblResponseZScoreLeft[i] < 0. &&
- _adblResponseZScoreRight[i] < -0.5 * _adblResponseZScoreLeft[i]))
- _aAU[i] = new Case3Univariate (_adblPredictorOrdinate[i], _adblPredictorOrdinate[i + 1],
- _adblResponseZScoreLeft[i], _adblResponseZScoreRight[i]);
- else if ((_adblResponseZScoreLeft[i] >= 0. && _adblResponseZScoreRight[i] >= 0.) ||
- (_adblResponseZScoreLeft[i] <= 0. && _adblResponseZScoreRight[i] <= 0.))
- _aAU[i] = new Case4Univariate (_adblPredictorOrdinate[i], _adblPredictorOrdinate[i + 1],
- _adblResponseZScoreLeft[i], _adblResponseZScoreRight[i]);
- }
- return true;
- }
- private boolean ameliorate (
- final double[] adblResponseLeftMin,
- final double[] adblResponseLeftMax,
- final double[] adblResponseRightMin,
- final double[] adblResponseRightMax)
- {
- int iNumObservation = _adblObservation.length;
- if (iNumObservation != adblResponseLeftMin.length || iNumObservation != adblResponseLeftMax.length ||
- iNumObservation != adblResponseRightMin.length || iNumObservation != adblResponseRightMax.length)
- return false;
- for (int i = 0; i < iNumObservation; ++i) {
- if (_adblResponseValue[i] < java.lang.Math.max (adblResponseLeftMin[i], adblResponseRightMin[i])
- || _adblResponseValue[i] > java.lang.Math.min (adblResponseLeftMax[i],
- adblResponseRightMax[i])) {
- if (_adblResponseValue[i] < java.lang.Math.max (adblResponseLeftMin[i],
- adblResponseRightMin[i]))
- _adblResponseValue[i] = java.lang.Math.max (adblResponseLeftMin[i],
- adblResponseRightMin[i]);
- else if (_adblResponseValue[i] > java.lang.Math.min (adblResponseLeftMax[i],
- adblResponseRightMax[i]))
- _adblResponseValue[i] = java.lang.Math.min (adblResponseLeftMax[i],
- adblResponseRightMax[i]);
- } else {
- if (_adblResponseValue[i] < java.lang.Math.min (adblResponseLeftMax[i],
- adblResponseRightMax[i]))
- _adblResponseValue[i] = java.lang.Math.min (adblResponseLeftMax[i],
- adblResponseRightMax[i]);
- else if (_adblResponseValue[i] > java.lang.Math.max (adblResponseLeftMin[i],
- adblResponseRightMin[i]))
- _adblResponseValue[i] = java.lang.Math.max (adblResponseLeftMin[i],
- adblResponseRightMin[i]);
- }
- }
- if (java.lang.Math.abs (_adblResponseValue[0] - _adblObservation[0]) > 0.5 * java.lang.Math.abs
- (_adblResponseValue[1] - _adblObservation[0]))
- _adblResponseValue[0] = _adblObservation[1] - 0.5 * (_adblResponseValue[1] -
- _adblObservation[0]);
- if (java.lang.Math.abs (_adblResponseValue[iNumObservation] - _adblObservation[iNumObservation - 1])
- > 0.5 * java.lang.Math.abs (_adblResponseValue[iNumObservation - 1] -
- _adblObservation[iNumObservation - 1]))
- _adblResponseValue[iNumObservation] = _adblObservation[iNumObservation - 1] - 0.5 *
- (_adblObservation[iNumObservation - 1] - _adblResponseValue[iNumObservation - 1]);
- return inferResponseZScores() && generateUnivariate();
- }
- private int containingIndex (
- final double dblPredictorOrdinate,
- final boolean bIncludeLeft,
- final boolean bIncludeRight)
- throws java.lang.Exception
- {
- int iNumSegment = _aAU.length;
- for (int i = 0 ; i < iNumSegment; ++i) {
- boolean bLeftValid = bIncludeLeft ? _adblPredictorOrdinate[i] <= dblPredictorOrdinate :
- _adblPredictorOrdinate[i] < dblPredictorOrdinate;
- boolean bRightValid = bIncludeRight ? _adblPredictorOrdinate[i + 1] >= dblPredictorOrdinate :
- _adblPredictorOrdinate[i + 1] > dblPredictorOrdinate;
- if (bLeftValid && bRightValid) return i;
- }
- throw new java.lang.Exception
- ("MonotoneConvexHaganWest::containingIndex => Cannot locate Containing Index");
- }
- @Override public double evaluate (
- final double dblPredictorOrdinate)
- throws java.lang.Exception
- {
- int iContainingIndex = containingIndex (dblPredictorOrdinate, true, true);
- return _aAU[iContainingIndex].evaluate (dblPredictorOrdinate) + _adblObservation[iContainingIndex];
- }
- /**
- * Enforce the Positivity of the Inferred Response Values
- *
- * @return TRUE - Positivity Enforcement is successful
- */
- public boolean enforcePositivity()
- {
- try {
- _adblResponseValue[0] = org.drip.numerical.common.NumberUtil.Bound (_adblResponseValue[0], 0., 2. *
- _adblObservation[0]);
- int iNumObservation = _adblObservation.length;
- for (int i = 1; i < iNumObservation; ++i)
- _adblResponseValue[i] = org.drip.numerical.common.NumberUtil.Bound (_adblResponseValue[i], 0., 2.
- * java.lang.Math.min (_adblObservation[i - 1], _adblObservation[i]));
- _adblResponseValue[iNumObservation] = org.drip.numerical.common.NumberUtil.Bound
- (_adblResponseValue[iNumObservation], 0., 2. * _adblObservation[iNumObservation - 1]);
- return inferResponseZScores() && generateUnivariate();
- } catch (java.lang.Exception e) {
- e.printStackTrace();
- }
- return false;
- }
- /**
- * Create an Ameliorated Instance of the Current Instance
- *
- * @param adblResponseLeftMin Response Left Floor
- * @param adblResponseLeftMax Response Left Ceiling
- * @param adblResponseRightMin Response Right Floor
- * @param adblResponseRightMax Response Right Ceiling
- * @param bEnforcePositivity TRUE - Enforce Positivity
- *
- * @return The Ameliorated Version of the Current Instance
- */
- public MonotoneConvexHaganWest generateAmelioratedInstance (
- final double[] adblResponseLeftMin,
- final double[] adblResponseLeftMax,
- final double[] adblResponseRightMin,
- final double[] adblResponseRightMax,
- final boolean bEnforcePositivity)
- {
- if (null == adblResponseLeftMin || null == adblResponseLeftMax | null == adblResponseRightMin || null
- == adblResponseRightMax)
- return null;
- int iNumAmelioratedObservation = _adblObservation.length + 2;
- int iNumAmelioratedPredicatorOrdinate = _adblPredictorOrdinate.length + 2;
- double[] adblAmelioratedObservation = new double[iNumAmelioratedObservation];
- double[] adblAmelioratedPredictorOrdinate = new double[iNumAmelioratedPredicatorOrdinate];
- for (int i = 0; i < iNumAmelioratedPredicatorOrdinate; ++i) {
- if (0 == i)
- adblAmelioratedPredictorOrdinate[0] = -1. * _adblPredictorOrdinate[1];
- else if (iNumAmelioratedPredicatorOrdinate - 1 == i)
- adblAmelioratedPredictorOrdinate[i] = 2. * _adblPredictorOrdinate[i - 1] -
- _adblPredictorOrdinate[i - 2];
- else
- adblAmelioratedPredictorOrdinate[i] = _adblPredictorOrdinate[i - 1];
- }
- for (int i = 0; i < iNumAmelioratedObservation; ++i) {
- if (0 == i)
- adblAmelioratedObservation[0] = _adblObservation[0] - (_adblPredictorOrdinate[1] -
- _adblPredictorOrdinate[0]) * (_adblObservation[1] - _adblObservation[0]) /
- (_adblPredictorOrdinate[2] - _adblPredictorOrdinate[0]);
- else if (iNumAmelioratedPredicatorOrdinate - 1 == i)
- adblAmelioratedObservation[i] = _adblObservation[i - 1] - (_adblPredictorOrdinate[i - 1] -
- _adblPredictorOrdinate[i - 2]) * (_adblObservation[i - 1] - _adblObservation[i - 2]) /
- (_adblPredictorOrdinate[i - 1] - _adblPredictorOrdinate[i - 3]);
- else
- adblAmelioratedObservation[i] = _adblObservation[i - 1];
- }
- MonotoneConvexHaganWest mchwAmeliorated = Create (adblAmelioratedPredictorOrdinate,
- adblAmelioratedObservation, _bLinearNodeInference);
- if (null == mchwAmeliorated || mchwAmeliorated.ameliorate (adblResponseLeftMin, adblResponseLeftMax,
- adblResponseRightMin, adblResponseRightMax))
- return null;
- if (bEnforcePositivity) {
- if (!mchwAmeliorated.enforcePositivity()) return null;
- }
- return mchwAmeliorated;
- }
- /**
- * Retrieve the Array of Predictor Ordinates
- *
- * @return The Array of Predictor Ordinates
- */
- public double[] predictorOrdinates()
- {
- return _adblPredictorOrdinate;
- }
- /**
- * Retrieve the Array of Response Values
- *
- * @return The Array of Response Values
- */
- public double[] responseValues()
- {
- return _adblResponseValue;
- }
- }