PathRd.java

  1. package org.drip.state.sequence;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  * Copyright (C) 2018 Lakshmi Krishnamurthy
  9.  * Copyright (C) 2017 Lakshmi Krishnamurthy
  10.  *
  11.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  12.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  13.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  14.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  15.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  16.  *      and computational support.
  17.  *  
  18.  *      https://lakshmidrip.github.io/DROP/
  19.  *  
  20.  *  DROP is composed of three modules:
  21.  *  
  22.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  23.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  24.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  25.  *
  26.  *  DROP Product Core implements libraries for the following:
  27.  *  - Fixed Income Analytics
  28.  *  - Loan Analytics
  29.  *  - Transaction Cost Analytics
  30.  *
  31.  *  DROP Portfolio Core implements libraries for the following:
  32.  *  - Asset Allocation Analytics
  33.  *  - Asset Liability Management Analytics
  34.  *  - Capital Estimation Analytics
  35.  *  - Exposure Analytics
  36.  *  - Margin Analytics
  37.  *  - XVA Analytics
  38.  *
  39.  *  DROP Computational Core implements libraries for the following:
  40.  *  - Algorithm Support
  41.  *  - Computation Support
  42.  *  - Function Analysis
  43.  *  - Model Validation
  44.  *  - Numerical Analysis
  45.  *  - Numerical Optimizer
  46.  *  - Spline Builder
  47.  *  - Statistical Learning
  48.  *
  49.  *  Documentation for DROP is Spread Over:
  50.  *
  51.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  52.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  53.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  54.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  55.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  56.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  57.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  58.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  59.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  60.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  61.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  62.  *
  63.  *  Licensed under the Apache License, Version 2.0 (the "License");
  64.  *      you may not use this file except in compliance with the License.
  65.  *  
  66.  *  You may obtain a copy of the License at
  67.  *      http://www.apache.org/licenses/LICENSE-2.0
  68.  *  
  69.  *  Unless required by applicable law or agreed to in writing, software
  70.  *      distributed under the License is distributed on an "AS IS" BASIS,
  71.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  72.  *  
  73.  *  See the License for the specific language governing permissions and
  74.  *      limitations under the License.
  75.  */

  76. /**
  77.  * <i>PathRd</i> exposes the Functionality to generate a Sequence of the Path Vertex Latent State
  78.  * R<sup>d</sup> Realizations across Multiple Paths.
  79.  *
  80.  *  <br><br>
  81.  *  <ul>
  82.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
  83.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FixedIncomeAnalyticsLibrary.md">Fixed Income Analytics</a></li>
  84.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/state/README.md">Latent State Inference and Creation Utilities</a></li>
  85.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/state/sequence/README.md">Monte Carlo Path State Realizations</a></li>
  86.  *  </ul>
  87.  * <br><br>
  88.  *
  89.  * @author Lakshmi Krishnamurthy
  90.  */

  91. public class PathRd {
  92.     private double[] _adblMean = null;
  93.     private boolean _bLogNormal = false;
  94.     private double _dblVolatility = java.lang.Double.NaN;

  95.     /**
  96.      * PathRd Constructor
  97.      *
  98.      * @param adblMean Array of Mean
  99.      * @param dblVolatility Volatility
  100.      * @param bLogNormal TRUE - The Generated Random Numbers are Log Normal
  101.      *
  102.      * @throws java.lang.Exception Thrown if Inputs are Invalid
  103.      */

  104.     public PathRd (
  105.         final double[] adblMean,
  106.         final double dblVolatility,
  107.         final boolean bLogNormal)
  108.         throws java.lang.Exception
  109.     {
  110.         if (!org.drip.numerical.common.NumberUtil.IsValid (_adblMean = adblMean) || null == _adblMean || 0 ==
  111.             _adblMean.length || !org.drip.numerical.common.NumberUtil.IsValid (_dblVolatility = dblVolatility) ||
  112.                 0. >= _dblVolatility)
  113.             throw new java.lang.Exception ("PathRd Constructor => Invalid Inputs");

  114.         _bLogNormal = bLogNormal;
  115.     }

  116.     /**
  117.      * Indicate if the Random Numbers are Gaussian/LogNormal
  118.      *
  119.      * @return TRUE - The Generated Random Numbers are Log Normal
  120.      */

  121.     public boolean logNormal()
  122.     {
  123.         return _bLogNormal;
  124.     }

  125.     /**
  126.      * Retrieve the R^d Dimension
  127.      *
  128.      * @return The R^d Dimension
  129.      */

  130.     public int dimension()
  131.     {
  132.         return _adblMean.length;
  133.     }

  134.     /**
  135.      * Retrieve the Array of Means
  136.      *
  137.      * @return The Array of Means
  138.      */

  139.     public double[] mean()
  140.     {
  141.         return _adblMean;
  142.     }

  143.     /**
  144.      * Retrieve the Volatility
  145.      *
  146.      * @return The Volatility
  147.      */

  148.     public double volatility()
  149.     {
  150.         return _dblVolatility;
  151.     }

  152.     /**
  153.      * Generate the Sequence of Path Realizations
  154.      *
  155.      * @param iNumPath Number of Paths
  156.      *
  157.      * @return The Sequence of Path Realizations
  158.      */

  159.     public double[][] sequence (
  160.         final int iNumPath)
  161.     {
  162.         if (0 >= iNumPath) return null;

  163.         int iNumDimension = _adblMean.length;
  164.         double[][] aadblSequence = new double[iNumPath][iNumDimension];

  165.         for (int iPath = 0; iPath < iNumPath; ++iPath) {
  166.             double[] adblRandom = org.drip.measure.discrete.SequenceGenerator.Gaussian (iNumDimension);

  167.             if (null == adblRandom || iNumDimension != adblRandom.length) return null;

  168.             for (int iDimension = 0; iDimension < iNumDimension; ++iDimension) {
  169.                 double dblWander = _dblVolatility * adblRandom[iDimension];

  170.                 aadblSequence[iPath][iDimension] = _bLogNormal ? _adblMean[iDimension] * java.lang.Math.exp
  171.                     (dblWander) : _adblMean[iDimension] + dblWander;
  172.             }
  173.         }

  174.         return aadblSequence;
  175.     }
  176. }