PathRd.java
- package org.drip.state.sequence;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- * Copyright (C) 2018 Lakshmi Krishnamurthy
- * Copyright (C) 2017 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>PathRd</i> exposes the Functionality to generate a Sequence of the Path Vertex Latent State
- * R<sup>d</sup> Realizations across Multiple Paths.
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ProductCore.md">Product Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/FixedIncomeAnalyticsLibrary.md">Fixed Income Analytics</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/state/README.md">Latent State Inference and Creation Utilities</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/state/sequence/README.md">Monte Carlo Path State Realizations</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class PathRd {
- private double[] _adblMean = null;
- private boolean _bLogNormal = false;
- private double _dblVolatility = java.lang.Double.NaN;
- /**
- * PathRd Constructor
- *
- * @param adblMean Array of Mean
- * @param dblVolatility Volatility
- * @param bLogNormal TRUE - The Generated Random Numbers are Log Normal
- *
- * @throws java.lang.Exception Thrown if Inputs are Invalid
- */
- public PathRd (
- final double[] adblMean,
- final double dblVolatility,
- final boolean bLogNormal)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (_adblMean = adblMean) || null == _adblMean || 0 ==
- _adblMean.length || !org.drip.numerical.common.NumberUtil.IsValid (_dblVolatility = dblVolatility) ||
- 0. >= _dblVolatility)
- throw new java.lang.Exception ("PathRd Constructor => Invalid Inputs");
- _bLogNormal = bLogNormal;
- }
- /**
- * Indicate if the Random Numbers are Gaussian/LogNormal
- *
- * @return TRUE - The Generated Random Numbers are Log Normal
- */
- public boolean logNormal()
- {
- return _bLogNormal;
- }
- /**
- * Retrieve the R^d Dimension
- *
- * @return The R^d Dimension
- */
- public int dimension()
- {
- return _adblMean.length;
- }
- /**
- * Retrieve the Array of Means
- *
- * @return The Array of Means
- */
- public double[] mean()
- {
- return _adblMean;
- }
- /**
- * Retrieve the Volatility
- *
- * @return The Volatility
- */
- public double volatility()
- {
- return _dblVolatility;
- }
- /**
- * Generate the Sequence of Path Realizations
- *
- * @param iNumPath Number of Paths
- *
- * @return The Sequence of Path Realizations
- */
- public double[][] sequence (
- final int iNumPath)
- {
- if (0 >= iNumPath) return null;
- int iNumDimension = _adblMean.length;
- double[][] aadblSequence = new double[iNumPath][iNumDimension];
- for (int iPath = 0; iPath < iNumPath; ++iPath) {
- double[] adblRandom = org.drip.measure.discrete.SequenceGenerator.Gaussian (iNumDimension);
- if (null == adblRandom || iNumDimension != adblRandom.length) return null;
- for (int iDimension = 0; iDimension < iNumDimension; ++iDimension) {
- double dblWander = _dblVolatility * adblRandom[iDimension];
- aadblSequence[iPath][iDimension] = _bLogNormal ? _adblMean[iDimension] * java.lang.Math.exp
- (dblWander) : _adblMean[iDimension] + dblWander;
- }
- }
- return aadblSequence;
- }
- }