Sample.java

  1. package org.drip.validation.evidence;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>Sample</i> holds the Sample of Realizations.
  76.  *
  77.  *  <br><br>
  78.  *  <ul>
  79.  *      <li>
  80.  *          Bhattacharya, B., and D. Habtzghi (2002): Median of the p-value under the Alternate Hypothesis
  81.  *              <i>American Statistician</i> <b>56 (3)</b> 202-206
  82.  *      </li>
  83.  *      <li>
  84.  *          Head, M. L., L. Holman, R, Lanfear, A. T. Kahn, and M. D. Jennions (2015): The Extent and
  85.  *              <i>Consequences of p-Hacking in Science PLoS Biology</i> <b>13 (3)</b> e1002106
  86.  *      </li>
  87.  *      <li>
  88.  *          Wasserstein, R. L., and N. A. Lazar (2016): The ASA’s Statement on p-values: Context, Process,
  89.  *              and Purpose <i>American Statistician</i> <b>70 (2)</b> 129-133
  90.  *      </li>
  91.  *      <li>
  92.  *          Wetzels, R., D. Matzke, M. D. Lee, J. N. Rouder, G, J, Iverson, and E. J. Wagenmakers (2011):
  93.  *              Statistical Evidence in Experimental Psychology: An Empirical Comparison using 855 t-Tests
  94.  *              <i>Perspectives in Psychological Science</i> <b>6 (3)</b> 291-298
  95.  *      </li>
  96.  *      <li>
  97.  *          Wikipedia (2019): p-value https://en.wikipedia.org/wiki/P-value
  98.  *      </li>
  99.  *  </ul>
  100.  *
  101.  *  <br><br>
  102.  *  <ul>
  103.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  104.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ModelValidationAnalyticsLibrary.md">Model Validation Analytics Library</a></li>
  105.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/validation/README.md">Risk Factor and Hypothesis Validation, Evidence Processing, and Model Testing</a></li>
  106.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/validation/evidence/README.md">Sample and Ensemble Evidence Processors</a></li>
  107.  *  </ul>
  108.  * <br><br>
  109.  *
  110.  * @author Lakshmi Krishnamurthy
  111.  */

  112. public class Sample implements org.drip.validation.evidence.NativePITGenerator
  113. {
  114.     private double[] _realizationArray = null;

  115.     /**
  116.      * Sample Constructor
  117.      *
  118.      * @param realizationArray The Sample Realization Array
  119.      *
  120.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  121.      */

  122.     public Sample (
  123.         final double[] realizationArray)
  124.         throws java.lang.Exception
  125.     {
  126.         if (null == (_realizationArray = realizationArray) ||
  127.             0 == _realizationArray.length ||
  128.             !org.drip.numerical.common.NumberUtil.IsValid (_realizationArray))
  129.         {
  130.             throw new java.lang.Exception ("Sample Constructor => Invalid Inputs");
  131.         }
  132.     }

  133.     /**
  134.      * Retrieve the Realization Array
  135.      *
  136.      * @return The Realization Array
  137.      */

  138.     public double[] realizationArray()
  139.     {
  140.         return _realizationArray;
  141.     }

  142.     /**
  143.      * Apply the specified Test Statistic Evaluator to the Sample
  144.      *
  145.      * @param testStatisticEvaluator The Test Statistic Evaluator
  146.      *
  147.      * @return The Sample Test Statistic
  148.      *
  149.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  150.      */

  151.     public double applyTestStatistic (
  152.         final org.drip.validation.evidence.TestStatisticEvaluator testStatisticEvaluator)
  153.         throws java.lang.Exception
  154.     {
  155.         if (null == testStatisticEvaluator)
  156.         {
  157.             throw new java.lang.Exception ("Sample::applyTestStatistic => Invalid Inputs");
  158.         }

  159.         return testStatisticEvaluator.evaluate (_realizationArray);
  160.     }

  161.     @Override public org.drip.validation.hypothesis.ProbabilityIntegralTransform
  162.         nativeProbabilityIntegralTransform()
  163.     {
  164.         org.drip.validation.evidence.TestStatisticAccumulator testStatisticAccumulator = new
  165.             org.drip.validation.evidence.TestStatisticAccumulator();

  166.         for (double realization : _realizationArray)
  167.         {
  168.             if (!testStatisticAccumulator.addTestStatistic (realization))
  169.             {
  170.                 return null;
  171.             }
  172.         }

  173.         return testStatisticAccumulator.probabilityIntegralTransform();
  174.     }
  175. }