TTestOutcome.java
- package org.drip.validation.hypothesis;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>TTestOutcome</i> holds the Results of a Statistic Hypothesis t-Test.
- *
- * <br><br>
- * <ul>
- * <li>
- * Bhattacharya, B., and D. Habtzghi (2002): Median of the p-value under the Alternate Hypothesis
- * American Statistician 56 (3) 202-206
- * </li>
- * <li>
- * Head, M. L., L. Holman, R, Lanfear, A. T. Kahn, and M. D. Jennions (2015): The Extent and
- * Consequences of p-Hacking in Science PLoS Biology 13 (3) e1002106
- * </li>
- * <li>
- * Wasserstein, R. L., and N. A. Lazar (2016): The ASA’s Statement on p-values: Context, Process,
- * and Purpose American Statistician 70 (2) 129-133
- * </li>
- * <li>
- * Wikipedia (2018): t-statistic https://en.wikipedia.org/wiki/T-statistic
- * </li>
- * <li>
- * Wikipedia (2019): p-value https://en.wikipedia.org/wiki/P-value
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ModelValidationAnalyticsLibrary.md">Model Validation Analytics Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/validation/README.md">Risk Factor and Hypothesis Validation, Evidence Processing, and Model Testing</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/validation/hypothesis/README.md">Statistical Hypothesis Validation Test Suite</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class TTestOutcome
- {
- private double _ensembleMean = java.lang.Double.NaN;
- private double _testStatistic = java.lang.Double.NaN;
- private int _sampleCount = java.lang.Integer.MIN_VALUE;
- private double _ensembleVariance = java.lang.Double.NaN;
- private double _ensembleTStatistics = java.lang.Double.NaN;
- private double _ensembleStandardError = java.lang.Double.NaN;
- private double _ensembleStandardDeviation = java.lang.Double.NaN;
- private double _ensembleStandardErrorOffset = java.lang.Double.NaN;
- private int _ensembleDegreesOfFreedom = java.lang.Integer.MIN_VALUE;
- private double _ensemblePredictiveConfidenceInterval = java.lang.Double.NaN;
- /**
- * TTestOutcome Constructor
- *
- * @param testStatistic Sample Test Statistic
- * @param sampleCount Number of Samples in the Ensemble
- * @param ensembleMean Ensemble Mean
- * @param ensembleVariance Ensemble Variance
- * @param ensembleStandardDeviation Ensemble Standard Deviation
- * @param ensembleStandardError Ensemble Standard Error
- * @param ensembleDegreesOfFreedom Ensemble Degrees of Freedom
- * @param ensemblePredictiveConfidenceInterval Ensemble Predictive Confidence Interval
- * @param ensembleTStatistics Ensemble t-Statistics
- * @param ensembleStandardErrorOffset Ensemble Standard Error Offset
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public TTestOutcome (
- final double testStatistic,
- final int sampleCount,
- final double ensembleMean,
- final double ensembleVariance,
- final double ensembleStandardDeviation,
- final double ensembleStandardError,
- final int ensembleDegreesOfFreedom,
- final double ensemblePredictiveConfidenceInterval,
- final double ensembleTStatistics,
- final double ensembleStandardErrorOffset)
- throws java.lang.Exception
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (_testStatistic = testStatistic) ||
- 0 >= (_sampleCount = sampleCount) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_ensembleMean = ensembleMean) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_ensembleVariance = ensembleVariance) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_ensembleStandardDeviation =
- ensembleStandardDeviation) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_ensembleStandardError = ensembleStandardError) ||
- 0 > (_ensembleDegreesOfFreedom = ensembleDegreesOfFreedom) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_ensemblePredictiveConfidenceInterval =
- ensemblePredictiveConfidenceInterval) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_ensembleTStatistics = ensembleTStatistics) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_ensembleStandardErrorOffset =
- ensembleStandardErrorOffset))
- {
- throw new java.lang.Exception ("TTestOutcome Constructor => Invalid Inputs");
- }
- }
- /**
- * Retrieve the Sample Test Statistic
- *
- * @return The Sample Test Statistic
- */
- public double testStatistic()
- {
- return _testStatistic;
- }
- /**
- * Retrieve the Sample Count
- *
- * @return The Sample Count
- */
- public int sampleCount()
- {
- return _sampleCount;
- }
- /**
- * Retrieve the Ensemble Mean
- *
- * @return The Ensemble Mean
- */
- public double ensembleMean()
- {
- return _ensembleMean;
- }
- /**
- * Retrieve the Ensemble Variance
- *
- * @return The Ensemble Variance
- */
- public double ensembleVariance()
- {
- return _ensembleVariance;
- }
- /**
- * Retrieve the Ensemble Standard Deviation
- *
- * @return The Ensemble Standard Deviation
- */
- public double ensembleStandardDeviation()
- {
- return _ensembleStandardDeviation;
- }
- /**
- * Retrieve the Ensemble Standard Error
- *
- * @return The Ensemble Standard Error
- */
- public double ensembleStandardError()
- {
- return _ensembleStandardError;
- }
- /**
- * Retrieve the Ensemble Degrees of Freedom
- *
- * @return The Ensemble Degrees of Freedom
- */
- public int ensembleDegreesOfFreedom()
- {
- return _ensembleDegreesOfFreedom;
- }
- /**
- * Retrieve the Ensemble Predictive Confidence Interval
- *
- * @return The Ensemble Predictive Confidence Interval
- */
- public double ensemblePredictiveConfidenceInterval()
- {
- return _ensemblePredictiveConfidenceInterval;
- }
- /**
- * Retrieve the Ensemble t-Statistics
- *
- * @return The Ensemble t-Statistics
- */
- public double ensembleTStatistics()
- {
- return _ensembleTStatistics;
- }
- /**
- * Retrieve the Ensemble Standard Error Offset
- *
- * @return The Ensemble Standard Error Offset
- */
- public double ensembleStandardErrorOffset()
- {
- return _ensembleStandardErrorOffset;
- }
- }