QQTestOutcome.java

  1. package org.drip.validation.quantile;

  2. /*
  3.  * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
  4.  */

  5. /*!
  6.  * Copyright (C) 2020 Lakshmi Krishnamurthy
  7.  * Copyright (C) 2019 Lakshmi Krishnamurthy
  8.  *
  9.  *  This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
  10.  *      asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
  11.  *      analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
  12.  *      equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
  13.  *      numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
  14.  *      and computational support.
  15.  *  
  16.  *      https://lakshmidrip.github.io/DROP/
  17.  *  
  18.  *  DROP is composed of three modules:
  19.  *  
  20.  *  - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
  21.  *  - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
  22.  *  - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
  23.  *
  24.  *  DROP Product Core implements libraries for the following:
  25.  *  - Fixed Income Analytics
  26.  *  - Loan Analytics
  27.  *  - Transaction Cost Analytics
  28.  *
  29.  *  DROP Portfolio Core implements libraries for the following:
  30.  *  - Asset Allocation Analytics
  31.  *  - Asset Liability Management Analytics
  32.  *  - Capital Estimation Analytics
  33.  *  - Exposure Analytics
  34.  *  - Margin Analytics
  35.  *  - XVA Analytics
  36.  *
  37.  *  DROP Computational Core implements libraries for the following:
  38.  *  - Algorithm Support
  39.  *  - Computation Support
  40.  *  - Function Analysis
  41.  *  - Model Validation
  42.  *  - Numerical Analysis
  43.  *  - Numerical Optimizer
  44.  *  - Spline Builder
  45.  *  - Statistical Learning
  46.  *
  47.  *  Documentation for DROP is Spread Over:
  48.  *
  49.  *  - Main                     => https://lakshmidrip.github.io/DROP/
  50.  *  - Wiki                     => https://github.com/lakshmiDRIP/DROP/wiki
  51.  *  - GitHub                   => https://github.com/lakshmiDRIP/DROP
  52.  *  - Repo Layout Taxonomy     => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
  53.  *  - Javadoc                  => https://lakshmidrip.github.io/DROP/Javadoc/index.html
  54.  *  - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
  55.  *  - Release Versions         => https://lakshmidrip.github.io/DROP/version.html
  56.  *  - Community Credits        => https://lakshmidrip.github.io/DROP/credits.html
  57.  *  - Issues Catalog           => https://github.com/lakshmiDRIP/DROP/issues
  58.  *  - JUnit                    => https://lakshmidrip.github.io/DROP/junit/index.html
  59.  *  - Jacoco                   => https://lakshmidrip.github.io/DROP/jacoco/index.html
  60.  *
  61.  *  Licensed under the Apache License, Version 2.0 (the "License");
  62.  *      you may not use this file except in compliance with the License.
  63.  *  
  64.  *  You may obtain a copy of the License at
  65.  *      http://www.apache.org/licenses/LICENSE-2.0
  66.  *  
  67.  *  Unless required by applicable law or agreed to in writing, software
  68.  *      distributed under the License is distributed on an "AS IS" BASIS,
  69.  *      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  70.  *  
  71.  *  See the License for the specific language governing permissions and
  72.  *      limitations under the License.
  73.  */

  74. /**
  75.  * <i>QQTestOutcome</i> holds the Elements of the QQ Vertexes that come from a QQ Plot Run.
  76.  *
  77.  *  <br><br>
  78.  *  <ul>
  79.  *      <li>
  80.  *          Filliben, J. J. (1975): The Probability Plot Correlation Coefficient Test for Normality
  81.  *              <i>Technometrics, American Society for Quality</i> <b>17 (1)</b> 111-117
  82.  *      </li>
  83.  *      <li>
  84.  *          Gibbons, J. D., and S. Chakraborti (2003): <i>Non-parametric Statistical Inference 4th
  85.  *              Edition</i> <b>CRC Press</b>
  86.  *      </li>
  87.  *      <li>
  88.  *          Gnanadesikan, R. (1977): <i>Methods for Statistical Analysis of Multivariate Observations</i>
  89.  *              <b>Wiley</b>
  90.  *      </li>
  91.  *      <li>
  92.  *          Thode, H. C. (2002): <i>Testing for Normality</i> <b>Marcel Dekker</b> New York
  93.  *      </li>
  94.  *      <li>
  95.  *          Wikipedia (2018): Q-Q Plot https://en.wikipedia.org/wiki/Q%E2%80%93Q_plot
  96.  *      </li>
  97.  *  </ul>
  98.  *
  99.  *  <br><br>
  100.  *  <ul>
  101.  *      <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
  102.  *      <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ModelValidationAnalyticsLibrary.md">Model Validation Analytics Library</a></li>
  103.  *      <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/validation/README.md">Risk Factor and Hypothesis Validation, Evidence Processing, and Model Testing</a></li>
  104.  *      <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/validation/quantile/README.md">Quantile Based Graphical Numerical Validators</a></li>
  105.  *  </ul>
  106.  * <br><br>
  107.  *
  108.  * @author Lakshmi Krishnamurthy
  109.  */

  110. public class QQTestOutcome
  111. {
  112.     private org.drip.validation.quantile.QQVertex[] _qqVertexArray = null;

  113.     /**
  114.      * QQTestOutcome Constructor
  115.      *
  116.      * @param qqVertexArray Array of Q-Q Vertexes
  117.      *
  118.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  119.      */

  120.     public QQTestOutcome (
  121.         final org.drip.validation.quantile.QQVertex[] qqVertexArray)
  122.         throws java.lang.Exception
  123.     {
  124.         if (null == (_qqVertexArray = qqVertexArray))
  125.         {
  126.             throw new java.lang.Exception ("QQTestOutcome Constructor => Invalid Inputs");
  127.         }

  128.         int qqVertexCount = _qqVertexArray.length;

  129.         if (0 == qqVertexCount)
  130.         {
  131.             throw new java.lang.Exception ("QQTestOutcome Constructor => Invalid Inputs");
  132.         }

  133.         for (int qqVertexIndex = 0; qqVertexIndex < qqVertexCount; ++qqVertexIndex)
  134.         {
  135.             if (null == _qqVertexArray[qqVertexIndex])
  136.             {
  137.                 throw new java.lang.Exception ("QQTestOutcome Constructor => Invalid Inputs");
  138.             }
  139.         }
  140.     }

  141.     /**
  142.      * Retrieve the Array of Q-Q Vertexes
  143.      *
  144.      * @return Array of Q-Q Vertexes
  145.      */

  146.     public org.drip.validation.quantile.QQVertex[] qqVertexArray()
  147.     {
  148.         return _qqVertexArray;
  149.     }

  150.     /**
  151.      * Compute the Probability Plot Correlation Coefficient (PPCC)
  152.      *
  153.      * @return The Probability Plot Correlation Coefficient (PPCC)
  154.      *
  155.      * @throws java.lang.Exception Thrown if the Inputs are Invalid
  156.      */

  157.     public double probabilityPlotCorrelationCoefficient()
  158.         throws java.lang.Exception
  159.     {
  160.         int vertexCount = _qqVertexArray.length;
  161.         double[][] orderStatisticsSequence = new double[2][vertexCount];

  162.         for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
  163.         {
  164.             orderStatisticsSequence[0][vertexIndex] = _qqVertexArray[vertexIndex].orderStatisticX();

  165.             orderStatisticsSequence[1][vertexIndex] = _qqVertexArray[vertexIndex].orderStatisticY();
  166.         }

  167.         return org.drip.measure.statistics.MultivariateMoments.Standard (
  168.             new java.lang.String[]
  169.             {
  170.                 "x",
  171.                 "y"
  172.             },
  173.             orderStatisticsSequence
  174.         ).correlation (
  175.             "x",
  176.             "y"
  177.         );
  178.     }
  179. }