NormalSampleCohort.java
- package org.drip.validation.riskfactorjoint;
- /*
- * -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
- */
- /*!
- * Copyright (C) 2020 Lakshmi Krishnamurthy
- * Copyright (C) 2019 Lakshmi Krishnamurthy
- *
- * This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
- * asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
- * analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
- * equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
- * numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
- * and computational support.
- *
- * https://lakshmidrip.github.io/DROP/
- *
- * DROP is composed of three modules:
- *
- * - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
- * - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
- * - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
- *
- * DROP Product Core implements libraries for the following:
- * - Fixed Income Analytics
- * - Loan Analytics
- * - Transaction Cost Analytics
- *
- * DROP Portfolio Core implements libraries for the following:
- * - Asset Allocation Analytics
- * - Asset Liability Management Analytics
- * - Capital Estimation Analytics
- * - Exposure Analytics
- * - Margin Analytics
- * - XVA Analytics
- *
- * DROP Computational Core implements libraries for the following:
- * - Algorithm Support
- * - Computation Support
- * - Function Analysis
- * - Model Validation
- * - Numerical Analysis
- * - Numerical Optimizer
- * - Spline Builder
- * - Statistical Learning
- *
- * Documentation for DROP is Spread Over:
- *
- * - Main => https://lakshmidrip.github.io/DROP/
- * - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
- * - GitHub => https://github.com/lakshmiDRIP/DROP
- * - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
- * - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
- * - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
- * - Release Versions => https://lakshmidrip.github.io/DROP/version.html
- * - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
- * - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
- * - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
- * - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- *
- * You may obtain a copy of the License at
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- *
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * <i>NormalSampleCohort</i> holds the Joint Realizations from a Multivariate Normal Distribution and its
- * Reduction to a Synthetic Single Risk Factor.
- *
- * <br><br>
- * <ul>
- * <li>
- * Anfuso, F., D. Karyampas, and A. Nawroth (2017): A Sound Basel III Compliant Framework for
- * Back-testing Credit Exposure Models
- * https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2264620 <b>eSSRN</b>
- * </li>
- * <li>
- * Diebold, F. X., T. A. Gunther, and A. S. Tay (1998): Evaluating Density Forecasts with
- * Applications to Financial Risk Management <i>International Economic Review</i> <b>39 (4)</b>
- * 863-883
- * </li>
- * <li>
- * Kenyon, C., and R. Stamm (2012): <i>Discounting, LIBOR, CVA, and Funding: Interest Rate and
- * Credit Pricing</i> <b>Palgrave Macmillan</b>
- * </li>
- * <li>
- * Wikipedia (2018): Probability Integral Transform
- * https://en.wikipedia.org/wiki/Probability_integral_transform
- * </li>
- * <li>
- * Wikipedia (2019): p-value https://en.wikipedia.org/wiki/P-value
- * </li>
- * </ul>
- *
- * <br><br>
- * <ul>
- * <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ComputationalCore.md">Computational Core Module</a></li>
- * <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/ModelValidationAnalyticsLibrary.md">Model Validation Analytics Library</a></li>
- * <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/validation/README.md">Risk Factor and Hypothesis Validation, Evidence Processing, and Model Testing</a></li>
- * <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/validation/riskfactorjoint/README.md">Joint Risk Factor Aggregate Tests</a></li>
- * </ul>
- * <br><br>
- *
- * @author Lakshmi Krishnamurthy
- */
- public class NormalSampleCohort implements org.drip.validation.riskfactorjoint.SampleCohort
- {
- private double _horizon = java.lang.Double.NaN;
- private org.drip.measure.stochastic.LabelRdVertex _labelRdVertex = null;
- private org.drip.measure.stochastic.LabelCovariance _latentStateLabelCovariance = null;
- /**
- * Generate a Correlated NormalSampleCohort
- *
- * @param labelList Label List
- * @param annualMeanArray Array of Annual Means
- * @param annualVolatilityArray Array of Annual Volatilities
- * @param correlationMatrix Correlation Matrix
- * @param vertexCount Vertex Count
- * @param horizon Horizon
- *
- * @return NormalSampleCohort Instance
- */
- public static final NormalSampleCohort Correlated (
- final java.util.List<java.lang.String> labelList,
- final double[] annualMeanArray,
- final double[] annualVolatilityArray,
- final double[][] correlationMatrix,
- final int vertexCount,
- final double horizon)
- {
- if (!org.drip.numerical.common.NumberUtil.IsValid (horizon))
- {
- return null;
- }
- org.drip.measure.discrete.CorrelatedPathVertexDimension correlatedPathVertexDimension = null;
- try
- {
- correlatedPathVertexDimension = new org.drip.measure.discrete.CorrelatedPathVertexDimension (
- new org.drip.measure.crng.RandomNumberGenerator(),
- correlationMatrix,
- vertexCount,
- 1,
- false,
- null
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- return null;
- }
- org.drip.measure.discrete.VertexRd[] vertexRdArray =
- correlatedPathVertexDimension.straightMultiPathVertexRd();
- if (null == vertexRdArray || null == vertexRdArray[0])
- {
- return null;
- }
- double[][] realization = vertexRdArray[0].flatform();
- if (null == realization)
- {
- return null;
- }
- double horizonSQRT = Math.sqrt (horizon);
- for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
- {
- for (int entityIndex = 0; entityIndex < correlationMatrix.length; ++entityIndex)
- {
- realization[vertexIndex][entityIndex] =
- realization[vertexIndex][entityIndex] * annualVolatilityArray[entityIndex] * horizonSQRT +
- annualMeanArray[entityIndex] * horizon;
- }
- }
- try
- {
- return new NormalSampleCohort (
- new org.drip.measure.stochastic.LabelRdVertex (
- labelList,
- realization
- ),
- new org.drip.measure.stochastic.LabelCovariance (
- labelList,
- annualMeanArray,
- annualVolatilityArray,
- correlationMatrix
- ),
- horizon
- );
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- /**
- * NormalSampleCohort Constructor
- *
- * @param labelRdVertex R<sup>d</sup> Labeled Vertex
- * @param latentStateLabelCovariance R<sup>d</sup> Labeled Covariance
- * @param horizon Horizon
- *
- * @throws java.lang.Exception Thrown if the Inputs are Invalid
- */
- public NormalSampleCohort (
- final org.drip.measure.stochastic.LabelRdVertex labelRdVertex,
- final org.drip.measure.stochastic.LabelCovariance latentStateLabelCovariance,
- final double horizon)
- throws java.lang.Exception
- {
- if (null == (_labelRdVertex = labelRdVertex) ||
- null == (_latentStateLabelCovariance = latentStateLabelCovariance) ||
- !org.drip.numerical.common.NumberUtil.IsValid (_horizon = horizon) || _horizon <= 0.)
- {
- throw new java.lang.Exception ("NormalSampleCohort Constructor => Invalid Inputs");
- }
- }
- /**
- * Retrieve the Latent State Label Covariance
- *
- * @return The Latent State Label Covariance
- */
- public org.drip.measure.stochastic.LabelCorrelation latentStateLabelCovariance()
- {
- return _latentStateLabelCovariance;
- }
- /**
- * Retrieve the Sample Horizon
- *
- * @return The Sample Horizon
- */
- public double horizon()
- {
- return _horizon;
- }
- @Override public java.util.List<java.lang.String> latentStateLabelList()
- {
- return _latentStateLabelCovariance.labelList();
- }
- @Override public org.drip.measure.stochastic.LabelRdVertex vertexRd()
- {
- return _labelRdVertex;
- }
- @Override public org.drip.validation.evidence.Sample reduce (
- final java.lang.String label1,
- final java.lang.String label2)
- {
- double annualMean1 = java.lang.Double.NaN;
- double annualMean2 = java.lang.Double.NaN;
- double correlation = java.lang.Double.NaN;
- double annualPrecision1 = java.lang.Double.NaN;
- double annualPrecision2 = java.lang.Double.NaN;
- double annualVolatility1 = java.lang.Double.NaN;
- double annualVolatility2 = java.lang.Double.NaN;
- try
- {
- correlation = _latentStateLabelCovariance.entry (
- label1,
- label2
- );
- annualMean1 = _latentStateLabelCovariance.mean (label1);
- annualMean2 = _latentStateLabelCovariance.mean (label2);
- annualPrecision1 = (1. / (annualVolatility1 = _latentStateLabelCovariance.volatility (label1)));
- annualPrecision2 = (1. / (annualVolatility2 = _latentStateLabelCovariance.volatility (label2)));
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- return null;
- }
- double[] vertexR1_1 = _labelRdVertex.vertexR1 (label1);
- double[] vertexR1_2 = _labelRdVertex.vertexR1 (label2);
- if (null == vertexR1_1 || null == vertexR1_2)
- {
- return null;
- }
- int cohortCount = vertexR1_1.length;
- double[] cohortRealization = new double[cohortCount];
- double cohortScale = java.lang.Math.exp (_horizon * (0.5 * (annualVolatility1 + annualVolatility2) -
- (1. + correlation) - (annualMean1 * annualPrecision1 + annualMean2 * annualPrecision2)));
- for (int cohortIndex = 0; cohortIndex < cohortCount; ++cohortIndex)
- {
- cohortRealization[cohortIndex] = cohortScale * java.lang.Math.pow (
- vertexR1_1[cohortIndex],
- annualPrecision1
- ) * java.lang.Math.pow (
- vertexR1_2[cohortIndex],
- annualPrecision2
- );
- }
- try
- {
- return new org.drip.validation.evidence.Sample (cohortRealization);
- }
- catch (java.lang.Exception e)
- {
- e.printStackTrace();
- }
- return null;
- }
- }