CollateralGroupPath.java
package org.drip.xva.netting;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2020 Lakshmi Krishnamurthy
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
* and computational support.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
*
* DROP Product Core implements libraries for the following:
* - Fixed Income Analytics
* - Loan Analytics
* - Transaction Cost Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Asset Liability Management Analytics
* - Capital Estimation Analytics
* - Exposure Analytics
* - Margin Analytics
* - XVA Analytics
*
* DROP Computational Core implements libraries for the following:
* - Algorithm Support
* - Computation Support
* - Function Analysis
* - Model Validation
* - Numerical Analysis
* - Numerical Optimizer
* - Spline Builder
* - Statistical Learning
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>CollateralGroupPath</i> accumulates the Vertex Realizations of the Sequence in a Single Path Projection
* Run along the Granularity of a Regular Collateral Hypothecation Group. The References are:
*
* <br><br>
* <ul>
* <li>
* Burgard, C., and M. Kjaer (2014): PDE Representations of Derivatives with Bilateral Counter-party
* Risk and Funding Costs <i>Journal of Credit Risk</i> <b>7 (3)</b> 1-19
* </li>
* <li>
* Burgard, C., and M. Kjaer (2014): In the Balance <i>Risk</i> <b>24 (11)</b> 72-75
* </li>
* <li>
* Gregory, J. (2009): Being Two-faced over Counter-party Credit Risk <i>Risk</i> <b>20 (2)</b>
* 86-90
* </li>
* <li>
* Li, B., and Y. Tang (2007): <i>Quantitative Analysis, Derivatives Modeling, and Trading
* Strategies in the Presence of Counter-party Credit Risk for the Fixed Income Market</i>
* <b>World Scientific Publishing</b> Singapore
* </li>
* <li>
* Piterbarg, V. (2010): Funding Beyond Discounting: Collateral Agreements and Derivatives Pricing
* <i>Risk</i> <b>21 (2)</b> 97-102
* </li>
* </ul>
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/PortfolioCore.md">Portfolio Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/XVAAnalyticsLibrary.md">XVA Analytics Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/xva/README.md">Valuation Adjustments that account for Collateral, CC Credit/Debt and Funding Overhead</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/xva/netting/README.md">Credit/Debt/Funding Netting Groups</a></li>
* </ul>
* <br><br>
*
* @author Lakshmi Krishnamurthy
*/
public class CollateralGroupPath
{
private double _overnightReplicatorStart = java.lang.Double.NaN;
private org.drip.exposure.universe.MarketPath _marketPath = null;
private org.drip.xva.hypothecation.CollateralGroupVertex[] _collateralGroupVertexArray = null;
/**
* CollateralGroupPath Constructor
*
* @param collateralGroupVertexArray The Array of Collateral Hypothecation Group Trajectory Vertexes
* @param marketPath The Market Path
*
* @throws java.lang.Exception Thrown if the Inputs are Invalid
*/
public CollateralGroupPath (
final org.drip.xva.hypothecation.CollateralGroupVertex[] collateralGroupVertexArray,
final org.drip.exposure.universe.MarketPath marketPath)
throws java.lang.Exception
{
if (null == (_collateralGroupVertexArray = collateralGroupVertexArray) ||
null == (_marketPath = marketPath))
{
throw new java.lang.Exception ("CollateralGroupPath Constructor => Invalid Inputs");
}
_overnightReplicatorStart = _marketPath.epochalMarketVertex().overnightReplicator();
int vertexCount = _collateralGroupVertexArray.length;
if (1 >= vertexCount)
{
throw new java.lang.Exception ("CollateralGroupPath Constructor => Invalid Inputs");
}
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
if (null == _collateralGroupVertexArray[vertexIndex])
{
throw new java.lang.Exception ("CollateralGroupPath Constructor => Invalid Inputs");
}
if (0 != vertexIndex && _collateralGroupVertexArray[vertexIndex - 1].vertexDate().julian() >=
_collateralGroupVertexArray[vertexIndex].vertexDate().julian())
{
throw new java.lang.Exception ("CollateralGroupPath Constructor => Invalid Inputs");
}
}
}
/**
* Retrieve the Array of Collateral Group Trajectory Vertexes
*
* @return The Array of Collateral Group Trajectory Vertexes
*/
public org.drip.xva.hypothecation.CollateralGroupVertex[] collateralGroupVertex()
{
return _collateralGroupVertexArray;
}
/**
* Retrieve the Market Path
*
* @return The Market Path
*/
public org.drip.exposure.universe.MarketPath marketPath()
{
return _marketPath;
}
/**
* Retrieve the Array of the Vertex Anchor Dates
*
* @return The Array of the Vertex Anchor Dates
*/
public org.drip.analytics.date.JulianDate[] vertexDates()
{
int vertexCount = _collateralGroupVertexArray.length;
org.drip.analytics.date.JulianDate[] vertexDateArray = new
org.drip.analytics.date.JulianDate[vertexCount];
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
vertexDateArray[vertexIndex] = _collateralGroupVertexArray[vertexIndex].vertexDate();
}
return vertexDateArray;
}
/**
* Retrieve the Array of Vertex Collateralized Exposures
*
* @return The Array of Vertex Collateralized Exposures
*/
public double[] vertexCollateralizedExposure()
{
int vertexCount = _collateralGroupVertexArray.length;
double[] collateralizedExposure = new double[vertexCount];
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
collateralizedExposure[vertexIndex] = _collateralGroupVertexArray[vertexIndex].collateralized();
}
return collateralizedExposure;
}
/**
* Retrieve the Array of Vertex Collateralized Exposure PV
*
* @return The Array of Vertex Collateralized Exposure PV
*/
public double[] vertexCollateralizedExposurePV()
{
int vertexCount = _collateralGroupVertexArray.length;
double[] collateralizedExposurePV = new double[vertexCount];
org.drip.analytics.date.JulianDate[] vertexDateArray = _marketPath.anchorDates();
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
collateralizedExposurePV[vertexIndex] = _collateralGroupVertexArray[vertexIndex].collateralized()
* _overnightReplicatorStart /
_marketPath.marketVertex (vertexDateArray[vertexIndex].julian()).overnightReplicator();
}
return collateralizedExposurePV;
}
/**
* Retrieve the Array of Vertex Uncollateralized Exposures
*
* @return The Array of Vertex Uncollateralized Exposures
*/
public double[] vertexUncollateralizedExposure()
{
int vertexCount = _collateralGroupVertexArray.length;
double[] uncollateralizedExposure = new double[vertexCount];
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
uncollateralizedExposure[vertexIndex] =
_collateralGroupVertexArray[vertexIndex].uncollateralized();
}
return uncollateralizedExposure;
}
/**
* Retrieve the Array of Vertex Uncollateralized Exposure PV
*
* @return The Array of Vertex Uncollateralized Exposure PV
*/
public double[] vertexUncollateralizedExposurePV()
{
int vertexCount = _collateralGroupVertexArray.length;
double[] uncollateralizedExposurePV = new double[vertexCount];
org.drip.analytics.date.JulianDate[] vertexDateArray = _marketPath.anchorDates();
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
uncollateralizedExposurePV[vertexIndex] =
_collateralGroupVertexArray[vertexIndex].uncollateralized() *
_overnightReplicatorStart /
_marketPath.marketVertex (vertexDateArray[vertexIndex].julian()).overnightReplicator();
}
return uncollateralizedExposurePV;
}
/**
* Retrieve the Array of Vertex Credit Exposures
*
* @return The Array of Vertex Credit Exposures
*/
public double[] vertexCreditExposure()
{
int vertexCount = _collateralGroupVertexArray.length;
double[] creditExposure = new double[vertexCount];
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
creditExposure[vertexIndex] = _collateralGroupVertexArray[vertexIndex].credit();
}
return creditExposure;
}
/**
* Retrieve the Array of Vertex Credit Exposure PV
*
* @return The Array of Vertex Credit Exposure PV
*/
public double[] vertexCreditExposurePV()
{
int vertexCount = _collateralGroupVertexArray.length;
double[] creditExposurePV = new double[vertexCount];
org.drip.analytics.date.JulianDate[] vertexDateArray = _marketPath.anchorDates();
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
creditExposurePV[vertexIndex] = _collateralGroupVertexArray[vertexIndex].credit() *
_overnightReplicatorStart /
_marketPath.marketVertex (vertexDateArray[vertexIndex].julian()).overnightReplicator();
}
return creditExposurePV;
}
/**
* Retrieve the Array of Vertex Debt Exposures
*
* @return The Array of Vertex Debt Exposures
*/
public double[] vertexDebtExposure()
{
int vertexCount = _collateralGroupVertexArray.length;
double[] debtExposure = new double[vertexCount];
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
debtExposure[vertexIndex] = _collateralGroupVertexArray[vertexIndex].debt();
}
return debtExposure;
}
/**
* Retrieve the Array of Vertex Debt Exposures PV
*
* @return The Array of Vertex Debt Exposures PV
*/
public double[] vertexDebtExposurePV()
{
int vertexCount = _collateralGroupVertexArray.length;
double[] debtExposurePV = new double[vertexCount];
org.drip.analytics.date.JulianDate[] vertexDateArray = _marketPath.anchorDates();
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
debtExposurePV[vertexIndex] = _collateralGroupVertexArray[vertexIndex].debt() *
_overnightReplicatorStart /
_marketPath.marketVertex (vertexDateArray[vertexIndex].julian()).overnightReplicator();
}
return debtExposurePV;
}
/**
* Retrieve the Array of Vertex Funding Exposures
*
* @return The Array of Vertex Funding Exposures
*/
public double[] vertexFundingExposure()
{
int vertexCount = _collateralGroupVertexArray.length;
double[] fundingExposure = new double[vertexCount];
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
fundingExposure[vertexIndex] = _collateralGroupVertexArray[vertexIndex].funding();
}
return fundingExposure;
}
/**
* Retrieve the Array of Vertex Funding Exposures PV
*
* @return The Array of Vertex Funding Exposures PV
*/
public double[] vertexFundingExposurePV()
{
int vertexCount = _collateralGroupVertexArray.length;
double[] fundingExposurePV = new double[vertexCount];
org.drip.analytics.date.JulianDate[] vertexDateArray = _marketPath.anchorDates();
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
fundingExposurePV[vertexIndex] = _collateralGroupVertexArray[vertexIndex].funding() *
_overnightReplicatorStart /
_marketPath.marketVertex (vertexDateArray[vertexIndex].julian()).overnightReplicator();
}
return fundingExposurePV;
}
/**
* Retrieve the Array of Vertex Collateral Balances
*
* @return The Array of Vertex Collateral Balances
*/
public double[] vertexCollateralBalance()
{
int vertexCount = _collateralGroupVertexArray.length;
double[] collateralizedBalance = new double[vertexCount];
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
collateralizedBalance[vertexIndex] =
_collateralGroupVertexArray[vertexIndex].variationMarginPosting();
}
return collateralizedBalance;
}
/**
* Retrieve the Array of Vertex Collateral Balances PV
*
* @return The Array of Vertex Collateral Balances PV
*/
public double[] vertexCollateralBalancePV()
{
int vertexCount = _collateralGroupVertexArray.length;
double[] collateralizedBalancePV = new double[vertexCount];
org.drip.analytics.date.JulianDate[] vertexDateArray = _marketPath.anchorDates();
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
collateralizedBalancePV[vertexIndex] =
_collateralGroupVertexArray[vertexIndex].variationMarginPosting() * _overnightReplicatorStart /
_marketPath.marketVertex (vertexDateArray[vertexIndex].julian()).overnightReplicator();
}
return collateralizedBalancePV;
}
/**
* Compute Period-wise Path Collateral Spread 01
*
* @return The Period-wise Path Collateral Spread 01
*/
public double[] periodCollateralSpread01()
{
org.drip.analytics.date.JulianDate[] vertexDateArray = _marketPath.anchorDates();
double[] vertexCollateralBalancePV = vertexCollateralBalancePV();
int vertexCount = vertexCollateralBalancePV.length;
double[] periodCollateralValueAdjustment = new double[vertexCount - 1];
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
periodCollateralValueAdjustment[vertexIndex - 1] = -0.5 *
(vertexCollateralBalancePV[vertexIndex - 1] + vertexCollateralBalancePV[vertexIndex]) *
(vertexDateArray[vertexIndex].julian() - vertexDateArray[vertexIndex - 1].julian()) / 365.25;
}
return periodCollateralValueAdjustment;
}
/**
* Compute Period-wise Path Collateral Value Adjustment
*
* @return The Period-wise Path Collateral Value Adjustment
*/
public double[] periodCollateralValueAdjustment()
{
org.drip.analytics.date.JulianDate[] vertexDateArray = _marketPath.anchorDates();
double[] vertexCollateralBalancePV = vertexCollateralBalancePV();
int vertexCount = vertexCollateralBalancePV.length;
double[] periodCollateralValueAdjustment = new double[vertexCount - 1];
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
int previousVertexDate = vertexDateArray[vertexIndex - 1].julian();
int currentVertexDate = vertexDateArray[vertexIndex].julian();
double periodIntegrandStart = vertexCollateralBalancePV[vertexIndex - 1] *
_marketPath.marketVertex (previousVertexDate).csaSpread();
double periodIntegrandEnd = vertexCollateralBalancePV[vertexIndex] *
_marketPath.marketVertex (currentVertexDate).csaSpread();
periodCollateralValueAdjustment[vertexIndex - 1] =
-0.5 * (periodIntegrandStart + periodIntegrandEnd) *
(currentVertexDate - previousVertexDate) / 365.25;
}
return periodCollateralValueAdjustment;
}
}