CreditDebtGroupPath.java
package org.drip.xva.netting;
/*
* -*- mode: java; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
*/
/*!
* Copyright (C) 2020 Lakshmi Krishnamurthy
* Copyright (C) 2019 Lakshmi Krishnamurthy
* Copyright (C) 2018 Lakshmi Krishnamurthy
* Copyright (C) 2017 Lakshmi Krishnamurthy
*
* This file is part of DROP, an open-source library targeting analytics/risk, transaction cost analytics,
* asset liability management analytics, capital, exposure, and margin analytics, valuation adjustment
* analytics, and portfolio construction analytics within and across fixed income, credit, commodity,
* equity, FX, and structured products. It also includes auxiliary libraries for algorithm support,
* numerical analysis, numerical optimization, spline builder, model validation, statistical learning,
* and computational support.
*
* https://lakshmidrip.github.io/DROP/
*
* DROP is composed of three modules:
*
* - DROP Product Core - https://lakshmidrip.github.io/DROP-Product-Core/
* - DROP Portfolio Core - https://lakshmidrip.github.io/DROP-Portfolio-Core/
* - DROP Computational Core - https://lakshmidrip.github.io/DROP-Computational-Core/
*
* DROP Product Core implements libraries for the following:
* - Fixed Income Analytics
* - Loan Analytics
* - Transaction Cost Analytics
*
* DROP Portfolio Core implements libraries for the following:
* - Asset Allocation Analytics
* - Asset Liability Management Analytics
* - Capital Estimation Analytics
* - Exposure Analytics
* - Margin Analytics
* - XVA Analytics
*
* DROP Computational Core implements libraries for the following:
* - Algorithm Support
* - Computation Support
* - Function Analysis
* - Model Validation
* - Numerical Analysis
* - Numerical Optimizer
* - Spline Builder
* - Statistical Learning
*
* Documentation for DROP is Spread Over:
*
* - Main => https://lakshmidrip.github.io/DROP/
* - Wiki => https://github.com/lakshmiDRIP/DROP/wiki
* - GitHub => https://github.com/lakshmiDRIP/DROP
* - Repo Layout Taxonomy => https://github.com/lakshmiDRIP/DROP/blob/master/Taxonomy.md
* - Javadoc => https://lakshmidrip.github.io/DROP/Javadoc/index.html
* - Technical Specifications => https://github.com/lakshmiDRIP/DROP/tree/master/Docs/Internal
* - Release Versions => https://lakshmidrip.github.io/DROP/version.html
* - Community Credits => https://lakshmidrip.github.io/DROP/credits.html
* - Issues Catalog => https://github.com/lakshmiDRIP/DROP/issues
* - JUnit => https://lakshmidrip.github.io/DROP/junit/index.html
* - Jacoco => https://lakshmidrip.github.io/DROP/jacoco/index.html
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
*
* You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**
* <i>CreditDebtGroupPath</i> rolls up the Path Realizations of the Sequence in a Single Path Projection Run
* over Multiple Collateral Hypothecation Groups onto a Single Credit/Debt Netting Group - the Purpose being
* to calculate Credit Valuation Adjustments. The References are:
*
* <br><br>
* <ul>
* <li>
* Burgard, C., and M. Kjaer (2014): PDE Representations of Derivatives with Bilateral Counter-party
* Risk and Funding Costs <i>Journal of Credit Risk</i> <b>7 (3)</b> 1-19
* </li>
* <li>
* Burgard, C., and M. Kjaer (2014): In the Balance <i>Risk</i> <b>24 (11)</b> 72-75
* </li>
* <li>
* Gregory, J. (2009): Being Two-faced over Counter-party Credit Risk <i>Risk</i> <b>20 (2)</b>
* 86-90
* </li>
* <li>
* Li, B., and Y. Tang (2007): <i>Quantitative Analysis, Derivatives Modeling, and Trading
* Strategies in the Presence of Counter-party Credit Risk for the Fixed Income Market</i>
* <b>World Scientific Publishing</b> Singapore
* </li>
* <li>
* Piterbarg, V. (2010): Funding Beyond Discounting: Collateral Agreements and Derivatives Pricing
* <i>Risk</i> <b>21 (2)</b> 97-102
* </li>
* </ul>
*
* <br><br>
* <ul>
* <li><b>Module </b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/PortfolioCore.md">Portfolio Core Module</a></li>
* <li><b>Library</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/XVAAnalyticsLibrary.md">XVA Analytics Library</a></li>
* <li><b>Project</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/xva/README.md">Valuation Adjustments that account for Collateral, CC Credit/Debt and Funding Overhead</a></li>
* <li><b>Package</b> = <a href = "https://github.com/lakshmiDRIP/DROP/tree/master/src/main/java/org/drip/xva/netting/README.md">Credit/Debt/Funding Netting Groups</a></li>
* </ul>
* <br><br>
*
* @author Lakshmi Krishnamurthy
*/
public abstract class CreditDebtGroupPath
{
private org.drip.exposure.universe.MarketPath _marketPath = null;
private org.drip.xva.netting.CollateralGroupPath[] _collateralGroupPathArray = null;
protected CreditDebtGroupPath (
final org.drip.xva.netting.CollateralGroupPath[] collateralGroupPathArray,
final org.drip.exposure.universe.MarketPath marketPath)
throws java.lang.Exception
{
if (null == (_collateralGroupPathArray = collateralGroupPathArray) ||
null == (_marketPath = marketPath))
{
throw new java.lang.Exception ("CreditDebtGroupPath Constructor => Invalid Inputs");
}
int collateralGroupCount = _collateralGroupPathArray.length;
if (0 == collateralGroupCount)
{
throw new java.lang.Exception ("CreditDebtGroupPath Constructor => Invalid Inputs");
}
for (int collateralGroupIndex = 0; collateralGroupIndex < collateralGroupCount;
++collateralGroupIndex)
{
if (null == _collateralGroupPathArray[collateralGroupIndex])
{
throw new java.lang.Exception ("CreditDebtGroupPath Constructor => Invalid Inputs");
}
}
}
/**
* Retrieve the Array of the Position Hypothecation Group Trajectory Paths
*
* @return Array of the Position Hypothecation Group Trajectory Paths
*/
public org.drip.xva.netting.CollateralGroupPath[] collateralGroupPaths()
{
return _collateralGroupPathArray;
}
/**
* Retrieve the Market Path
*
* @return The Market Path
*/
public org.drip.exposure.universe.MarketPath marketPath()
{
return _marketPath;
}
/**
* Retrieve the Array of the Vertex Anchor Dates
*
* @return The Array of the Vertex Anchor Dates
*/
public org.drip.analytics.date.JulianDate[] vertexDates()
{
return _collateralGroupPathArray[0].vertexDates();
}
/**
* Retrieve the Array of Vertex Collateralized Exposures
*
* @return The Array of Vertex Collateralized Exposures
*/
public double[] vertexCollateralizedExposure()
{
int vertexCount = vertexDates().length;
int collateralGroupCount = _collateralGroupPathArray.length;
double[] vertexCollateralizedExposure = new double[vertexCount];
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
vertexCollateralizedExposure[vertexIndex] = 0.;
}
for (int collateralGroupIndex = 0; collateralGroupIndex < collateralGroupCount;
++collateralGroupIndex)
{
double[] collateralGroupVertexCollateralizedExposure =
_collateralGroupPathArray[collateralGroupIndex].vertexCollateralizedExposure();
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
vertexCollateralizedExposure[vertexIndex] +=
collateralGroupVertexCollateralizedExposure[vertexIndex];
}
}
return vertexCollateralizedExposure;
}
/**
* Retrieve the Array of Vertex Collateralized Exposure PV
*
* @return The Array of Vertex Collateralized Exposure PV
*/
public double[] vertexCollateralizedExposurePV()
{
int vertexCount = vertexDates().length;
double[] vertexCollateralizedExposurePV = new double[vertexCount];
int collateralGroupCount = _collateralGroupPathArray.length;
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
vertexCollateralizedExposurePV[vertexIndex] = 0.;
}
for (int collateralGroupIndex = 0; collateralGroupIndex < collateralGroupCount;
++collateralGroupIndex)
{
double[] collateralGroupVertexCollateralizedExposurePV =
_collateralGroupPathArray[collateralGroupIndex].vertexCollateralizedExposurePV();
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
vertexCollateralizedExposurePV[vertexIndex] +=
collateralGroupVertexCollateralizedExposurePV[vertexIndex];
}
}
return vertexCollateralizedExposurePV;
}
/**
* Retrieve the Array of Vertex Collateralized Positive Exposures
*
* @return The Array of Vertex Collateralized Positive Exposures
*/
public double[] vertexCollateralizedPositiveExposure()
{
double[] vertexCollateralizedPositiveExposure = vertexCollateralizedExposure();
int vertexCount = vertexCollateralizedPositiveExposure.length;
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
if (0. > vertexCollateralizedPositiveExposure[vertexIndex])
vertexCollateralizedPositiveExposure[vertexIndex] = 0.;
}
return vertexCollateralizedPositiveExposure;
}
/**
* Retrieve the Array of Vertex Collateralized Positive Exposure PV
*
* @return The Array of Vertex Collateralized Positive Exposures PV
*/
public double[] vertexCollateralizedPositiveExposurePV()
{
double[] vertexCollateralizedPositiveExposurePV = vertexCollateralizedExposurePV();
int vertexCount = vertexCollateralizedPositiveExposurePV.length;
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
if (0. > vertexCollateralizedPositiveExposurePV[vertexIndex])
vertexCollateralizedPositiveExposurePV[vertexIndex] = 0.;
}
return vertexCollateralizedPositiveExposurePV;
}
/**
* Retrieve the Array of Vertex Collateralized Negative Exposures
*
* @return The Array of Vertex Collateralized Negative Exposures
*/
public double[] vertexCollateralizedNegativeExposure()
{
double[] vertexCollateralizedNegativeExposure = vertexCollateralizedExposure();
int vertexCount = vertexCollateralizedNegativeExposure.length;
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
if (0. < vertexCollateralizedNegativeExposure[vertexIndex])
vertexCollateralizedNegativeExposure[vertexIndex] = 0.;
}
return vertexCollateralizedNegativeExposure;
}
/**
* Retrieve the Array of Vertex Collateralized Negative Exposure PV
*
* @return The Array of Vertex Collateralized Negative Exposure PV
*/
public double[] vertexCollateralizedNegativeExposurePV()
{
double[] vertexCollateralizedNegativeExposurePV = vertexCollateralizedExposurePV();
int vertexCount = vertexCollateralizedNegativeExposurePV.length;
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
if (0. < vertexCollateralizedNegativeExposurePV[vertexIndex])
vertexCollateralizedNegativeExposurePV[vertexIndex] = 0.;
}
return vertexCollateralizedNegativeExposurePV;
}
/**
* Retrieve the Array of Vertex Uncollateralized Exposures
*
* @return The Array of Vertex Uncollateralized Exposures
*/
public double[] vertexUncollateralizedExposure()
{
int vertexCount = vertexDates().length;
int collateralGroupCount = _collateralGroupPathArray.length;
double[] vertexUncollateralizedExposure = new double[vertexCount];
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
vertexUncollateralizedExposure[vertexIndex] = 0.;
}
for (int collateralGroupIndex = 0; collateralGroupIndex < collateralGroupCount;
++collateralGroupIndex)
{
double[] collateralGroupVertexUncollateralizedExposure =
_collateralGroupPathArray[collateralGroupIndex].vertexUncollateralizedExposure();
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
vertexUncollateralizedExposure[vertexIndex] +=
collateralGroupVertexUncollateralizedExposure[vertexIndex];
}
}
return vertexUncollateralizedExposure;
}
/**
* Retrieve the Array of Vertex Uncollateralized Exposure PV
*
* @return The Array of Vertex Uncollateralized Exposure PV
*/
public double[] vertexUncollateralizedExposurePV()
{
int vertexCount = vertexDates().length;
int collateralGroupCount = _collateralGroupPathArray.length;
double[] vertexUncollateralizedExposurePV = new double[vertexCount];
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
vertexUncollateralizedExposurePV[vertexIndex] = 0.;
}
for (int collateralGroupIndex = 0; collateralGroupIndex < collateralGroupCount;
++collateralGroupIndex)
{
double[] collateralGroupVertexUncollateralizedExposurePV =
_collateralGroupPathArray[collateralGroupIndex].vertexUncollateralizedExposurePV();
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
vertexUncollateralizedExposurePV[vertexIndex] +=
collateralGroupVertexUncollateralizedExposurePV[vertexIndex];
}
}
return vertexUncollateralizedExposurePV;
}
/**
* Retrieve the Array of Vertex Uncollateralized Positive Exposures
*
* @return The Array of Vertex Uncollateralized Positive Exposures
*/
public double[] vertexUncollateralizedPositiveExposure()
{
double[] vertexUncollateralizedPositiveExposure = vertexUncollateralizedExposure();
int vertexCount = vertexUncollateralizedPositiveExposure.length;
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
if (0. > vertexUncollateralizedPositiveExposure[vertexIndex])
vertexUncollateralizedPositiveExposure[vertexIndex] = 0.;
}
return vertexUncollateralizedPositiveExposure;
}
/**
* Retrieve the Array of Vertex Uncollateralized Positive Exposure PV
*
* @return The Array of Vertex Uncollateralized Positive Exposure PV
*/
public double[] vertexUncollateralizedPositiveExposurePV()
{
double[] vertexUncollateralizedPositiveExposurePV = vertexUncollateralizedExposurePV();
int vertexCount = vertexUncollateralizedPositiveExposurePV.length;
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
if (0. > vertexUncollateralizedPositiveExposurePV[vertexIndex])
vertexUncollateralizedPositiveExposurePV[vertexIndex] = 0.;
}
return vertexUncollateralizedPositiveExposurePV;
}
/**
* Retrieve the Array of Vertex Uncollateralized Negative Exposures
*
* @return The Array of Vertex Uncollateralized Negative Exposures
*/
public double[] vertexUncollateralizedNegativeExposure()
{
double[] vertexUncollateralizedNegativeExposure = vertexUncollateralizedExposure();
int vertexCount = vertexUncollateralizedNegativeExposure.length;
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
if (0. < vertexUncollateralizedNegativeExposure[vertexIndex])
vertexUncollateralizedNegativeExposure[vertexIndex] = 0.;
}
return vertexUncollateralizedNegativeExposure;
}
/**
* Retrieve the Array of Vertex Uncollateralized Negative Exposure PV
*
* @return The Array of Vertex Uncollateralized Negative Exposure PV
*/
public double[] vertexUncollateralizedNegativeExposurePV()
{
double[] vertexUncollateralizedNegativeExposurePV = vertexUncollateralizedExposurePV();
int vertexCount = vertexUncollateralizedNegativeExposurePV.length;
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
if (0. < vertexUncollateralizedNegativeExposurePV[vertexIndex])
vertexUncollateralizedNegativeExposurePV[vertexIndex] = 0.;
}
return vertexUncollateralizedNegativeExposurePV;
}
/**
* Retrieve the Array of Vertex Credit Exposure
*
* @return The Array of Vertex Credit Exposure
*/
public double[] vertexCreditExposure()
{
return vertexCollateralizedPositiveExposure();
}
/**
* Retrieve the Array of Vertex Credit Exposure PV
*
* @return The Array of Vertex Credit Exposure PV
*/
public double[] vertexCreditExposurePV()
{
return vertexCollateralizedPositiveExposurePV();
}
/**
* Retrieve the Array of Vertex Debt Exposure
*
* @return The Array of Vertex Debt Exposure
*/
public double[] vertexDebtExposure()
{
return vertexCollateralizedNegativeExposure();
}
/**
* Retrieve the Array of Vertex Debt Exposure PV
*
* @return The Array of Vertex Debt Exposure PV
*/
public double[] vertexDebtExposurePV()
{
return vertexCollateralizedNegativeExposurePV();
}
/**
* Retrieve the Array of Vertex Funding Exposure
*
* @return The Array of Vertex Funding Exposure
*/
public double[] vertexFundingExposure()
{
return vertexCollateralizedExposure();
}
/**
* Retrieve the Array of Vertex Funding Exposure PV
*
* @return The Array of Vertex Funding Exposure PV
*/
public double[] vertexFundingExposurePV()
{
return vertexCollateralizedExposurePV();
}
/**
* Retrieve the Array of Vertex Collateral Balances
*
* @return The Array of Vertex Collateral Balances
*/
public double[] vertexCollateralBalance()
{
int vertexCount = vertexDates().length;
int collateralGroupCount = _collateralGroupPathArray.length;
double[] vertexCollateralBalance = new double[vertexCount];
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
vertexCollateralBalance[vertexIndex] = 0.;
}
for (int collateralGroupIndex = 0; collateralGroupIndex < collateralGroupCount;
++collateralGroupIndex)
{
double[] collateralVertexGroupCollateralBalance =
_collateralGroupPathArray[collateralGroupIndex].vertexCollateralBalance();
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
vertexCollateralBalance[vertexIndex] += collateralVertexGroupCollateralBalance[vertexIndex];
}
}
return vertexCollateralBalance;
}
/**
* Retrieve the Array of Vertex Collateral Balances PV
*
* @return The Array of Vertex Collateral Balances PV
*/
public double[] vertexCollateralBalancePV()
{
int vertexCount = vertexDates().length;
int collateralGroupCount = _collateralGroupPathArray.length;
double[] vertexCollateralBalancePV = new double[vertexCount];
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
vertexCollateralBalancePV[vertexIndex] = 0.;
}
for (int collateralGroupIndex = 0; collateralGroupIndex < collateralGroupCount;
++collateralGroupIndex)
{
double[] collateralVertexGroupCollateralBalancePV =
_collateralGroupPathArray[collateralGroupIndex].vertexCollateralBalancePV();
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
vertexCollateralBalancePV[vertexIndex] +=
collateralVertexGroupCollateralBalancePV[vertexIndex];
}
}
return vertexCollateralBalancePV;
}
/**
* Compute Period-wise Path Collateral Spread 01
*
* @return The Period-wise Path Collateral Spread 01
*/
public double[] periodCollateralSpread01()
{
int vertexCount = vertexDates().length;
int periodCount = vertexCount - 1;
int collateralGroupCount = _collateralGroupPathArray.length;
double[] periodCollateralSpread01 = new double[periodCount];
for (int periodIndex = 0; periodIndex < periodCount; ++periodIndex)
{
periodCollateralSpread01[periodIndex] = 0.;
}
for (int collateralGroupIndex = 0; collateralGroupIndex < collateralGroupCount;
++collateralGroupIndex)
{
double[] collateralPeriodCollateralSpread01 =
_collateralGroupPathArray[collateralGroupIndex].periodCollateralSpread01();
for (int periodIndex = 0; periodIndex < periodCount; ++periodIndex)
{
periodCollateralSpread01[periodIndex] += collateralPeriodCollateralSpread01[periodIndex];
}
}
return periodCollateralSpread01;
}
/**
* Compute Period-wise Path Collateral Value Adjustment
*
* @return The Period-wise Path Collateral Value Adjustment
*/
public double[] periodCollateralValueAdjustment()
{
int vertexCount = vertexDates().length;
int periodCount = vertexCount - 1;
int collateralGroupCount = _collateralGroupPathArray.length;
double[] periodCollateralValueAdjustment = new double[periodCount];
for (int periodIndex = 0; periodIndex < periodCount; ++periodIndex)
{
periodCollateralValueAdjustment[periodIndex] = 0.;
}
for (int collateralGroupIndex = 0; collateralGroupIndex < collateralGroupCount;
++collateralGroupIndex)
{
double[] collateralPeriodCollateralValueAdjustment =
_collateralGroupPathArray[collateralGroupIndex].periodCollateralValueAdjustment();
for (int periodIndex = 0; periodIndex < periodCount; ++periodIndex)
{
periodCollateralValueAdjustment[periodIndex] +=
collateralPeriodCollateralValueAdjustment[periodIndex];
}
}
return periodCollateralValueAdjustment;
}
/**
* Compute Path Unilateral Credit Adjustment
*
* @return The Path Unilateral Credit Adjustment
*/
public double unilateralCreditAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexCreditExposurePV = vertexCreditExposurePV();
int vertexCount = vertexCreditExposurePV.length;
double unilateralCreditAdjustment = 0.;
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexCreditExposurePV[vertexIndex - 1] * (1. -
marketVertexArray[vertexIndex - 1].client().seniorRecoveryRate());
double periodIntegrandEnd = vertexCreditExposurePV[vertexIndex] * (1. -
marketVertexArray[vertexIndex].client().seniorRecoveryRate());
unilateralCreditAdjustment -= 0.5 * (periodIntegrandStart + periodIntegrandEnd) *
(marketVertexArray[vertexIndex - 1].client().survivalProbability() -
marketVertexArray[vertexIndex].client().survivalProbability());
}
return unilateralCreditAdjustment;
}
/**
* Compute Path Bilateral Credit Adjustment
*
* @return The Path Bilateral Credit Adjustment
*/
public double bilateralCreditAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexCreditExposurePV = vertexCreditExposurePV();
int vertexCount = vertexCreditExposurePV.length;
double bilateralCreditAdjustment = 0.;
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexCreditExposurePV[vertexIndex - 1] * (1. -
marketVertexArray[vertexIndex - 1].client().seniorRecoveryRate()) *
marketVertexArray[vertexIndex - 1].dealer().survivalProbability();
double periodIntegrandEnd = vertexCreditExposurePV[vertexIndex] * (1. -
marketVertexArray[vertexIndex].client().seniorRecoveryRate()) *
marketVertexArray[vertexIndex].dealer().survivalProbability();
bilateralCreditAdjustment -= 0.5 * (periodIntegrandStart + periodIntegrandEnd) *
(marketVertexArray[vertexIndex - 1].client().survivalProbability() -
marketVertexArray[vertexIndex].client().survivalProbability());
}
return bilateralCreditAdjustment;
}
/**
* Compute Path Contra-Liability Credit Adjustment
*
* @return The Path Contra-Liability Credit Adjustment
*/
public double contraLiabilityCreditAdjustment()
{
return bilateralCreditAdjustment() - unilateralCreditAdjustment();
}
/**
* Compute Path Unilateral Debt Adjustment
*
* @return The Path Unilateral Debt Adjustment
*/
public double unilateralDebtAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexDebtExposurePV = vertexDebtExposurePV();
int vertexCount = vertexDebtExposurePV.length;
double unilateralDebtAdjustment = 0.;
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexDebtExposurePV[vertexIndex - 1] * (1. -
marketVertexArray[vertexIndex - 1].dealer().seniorRecoveryRate());
double periodIntegrandEnd = vertexDebtExposurePV[vertexIndex] * (1. -
marketVertexArray[vertexIndex].dealer().seniorRecoveryRate());
unilateralDebtAdjustment -= 0.5 * (periodIntegrandStart + periodIntegrandEnd) *
(marketVertexArray[vertexIndex - 1].dealer().survivalProbability() -
marketVertexArray[vertexIndex].dealer().survivalProbability());
}
return unilateralDebtAdjustment;
}
/**
* Compute Path Bilateral Debt Adjustment
*
* @return The Path Bilateral Debt Adjustment
*/
public double bilateralDebtAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexDebtExposurePV = vertexDebtExposurePV();
int vertexCount = vertexDebtExposurePV.length;
double bilateralDebtAdjustment = 0.;
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexDebtExposurePV[vertexIndex - 1] * (1. -
marketVertexArray[vertexIndex - 1].dealer().seniorRecoveryRate()) *
marketVertexArray[vertexIndex - 1].client().survivalProbability();
double periodIntegrandEnd = vertexDebtExposurePV[vertexIndex] * (1. -
marketVertexArray[vertexIndex].dealer().seniorRecoveryRate()) *
marketVertexArray[vertexIndex].client().survivalProbability();
bilateralDebtAdjustment -= 0.5 * (periodIntegrandStart + periodIntegrandEnd) *
(marketVertexArray[vertexIndex - 1].dealer().survivalProbability() -
marketVertexArray[vertexIndex].dealer().survivalProbability());
}
return bilateralDebtAdjustment;
}
/**
* Compute Path Contra-Asset Debt Adjustment
*
* @return The Path Contra-Asset Debt Adjustment
*/
public double contraAssetDebtAdjustment()
{
return bilateralDebtAdjustment() - unilateralDebtAdjustment();
}
/**
* Compute Path Symmetric Funding Value Spread 01
*
* @return The Path Symmetric Funding Value Spread 01
*/
public double symmetricFundingValueSpread01()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexCollateralizedExposurePV = vertexCollateralizedExposurePV();
int vertexCount = vertexCollateralizedExposurePV.length;
double symmetricFundingValueSpread01 = 0.;
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
symmetricFundingValueSpread01 = 0.5 * (
vertexCollateralizedExposurePV[vertexIndex - 1] *
marketVertexArray[vertexIndex - 1].dealer().survivalProbability() +
vertexCollateralizedExposurePV[vertexIndex] *
marketVertexArray[vertexIndex].dealer().survivalProbability()
) * (
marketVertexArray[vertexIndex].anchorDate().julian() -
marketVertexArray[vertexIndex - 1].anchorDate().julian()
) / 365.25;
}
return symmetricFundingValueSpread01;
}
/**
* Compute Path Unilateral Funding Value Spread 01
*
* @return The Path Unilateral Funding Value Spread 01
*/
public double unilateralFundingValueSpread01()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexFundingExposurePV = vertexFundingExposurePV();
int vertexCount = vertexFundingExposurePV.length;
double unilateralFundingValueSpread01 = 0.;
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexFundingExposurePV[vertexIndex - 1] *
marketVertexArray[vertexIndex - 1].client().survivalProbability();
double periodIntegrandEnd = vertexFundingExposurePV[vertexIndex] *
marketVertexArray[vertexIndex].client().survivalProbability();
unilateralFundingValueSpread01 = 0.5 * (periodIntegrandStart + periodIntegrandEnd) * (
marketVertexArray[vertexIndex].anchorDate().julian() -
marketVertexArray[vertexIndex - 1].anchorDate().julian()
) / 365.25;
}
return unilateralFundingValueSpread01;
}
/**
* Compute Path Bilateral Funding Value Spread 01
*
* @return The Path Bilateral Funding Value Spread 01
*/
public double bilateralFundingValueSpread01()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexFundingExposurePV = vertexFundingExposurePV();
int vertexCount = vertexFundingExposurePV.length;
double bilateralFundingValueSpread01 = 0.;
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexFundingExposurePV[vertexIndex - 1] *
marketVertexArray[vertexIndex - 1].client().survivalProbability() *
marketVertexArray[vertexIndex - 1].dealer().survivalProbability();
double periodIntegrandEnd = vertexFundingExposurePV[vertexIndex] *
marketVertexArray[vertexIndex].client().survivalProbability() *
marketVertexArray[vertexIndex].dealer().survivalProbability();
bilateralFundingValueSpread01 = 0.5 * (periodIntegrandStart + periodIntegrandEnd) * (
marketVertexArray[vertexIndex].anchorDate().julian() -
marketVertexArray[vertexIndex - 1].anchorDate().julian()
) / 365.25;
}
return bilateralFundingValueSpread01;
}
/**
* Compute Path Unilateral Funding Debt Adjustment
*
* @return The Path Unilateral Funding Debt Adjustment
*/
public double unilateralFundingDebtAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexDebtExposurePV = vertexDebtExposurePV();
int vertexCount = vertexDebtExposurePV.length;
double unilateralFundingDebtAdjustment = 0.;
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexDebtExposurePV[vertexIndex - 1] * (1. -
marketVertexArray[vertexIndex - 1].dealer().seniorRecoveryRate());
double periodIntegrandEnd = vertexDebtExposurePV[vertexIndex] * (1. -
marketVertexArray[vertexIndex].dealer().seniorRecoveryRate());
unilateralFundingDebtAdjustment -= 0.5 * (periodIntegrandStart + periodIntegrandEnd) *
(marketVertexArray[vertexIndex - 1].dealer().survivalProbability() -
marketVertexArray[vertexIndex].dealer().survivalProbability());
}
return unilateralFundingDebtAdjustment;
}
/**
* Compute Path Bilateral Funding Debt Adjustment
*
* @return The Path Bilateral Funding Debt Adjustment
*/
public double bilateralFundingDebtAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexDebtExposurePV = vertexDebtExposurePV();
int vertexCount = vertexDebtExposurePV.length;
double bilateralFundingDebtAdjustment = 0.;
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexDebtExposurePV[vertexIndex - 1] *
marketVertexArray[vertexIndex - 1].client().survivalProbability() * (1. -
marketVertexArray[vertexIndex - 1].dealer().seniorRecoveryRate());
double periodIntegrandEnd = vertexDebtExposurePV[vertexIndex] *
marketVertexArray[vertexIndex].client().survivalProbability() * (1. -
marketVertexArray[vertexIndex].dealer().seniorRecoveryRate());
bilateralFundingDebtAdjustment += 0.5 * (periodIntegrandStart + periodIntegrandEnd) *
(marketVertexArray[vertexIndex - 1].dealer().survivalProbability() -
marketVertexArray[vertexIndex].dealer().survivalProbability());
}
return bilateralFundingDebtAdjustment;
}
/**
* Compute Path Unilateral Collateral Value Adjustment
*
* @return The Path Unilateral Collateral Value Adjustment
*/
public double unilateralCollateralAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] periodCollateralValueAdjustment = periodCollateralValueAdjustment();
double unilateralCollateralValueAdjustment = 0.;
int periodCount = periodCollateralValueAdjustment.length;
for (int periodIndex = 0; periodIndex < periodCount; ++periodIndex)
{
unilateralCollateralValueAdjustment += 0.5 * periodCollateralValueAdjustment[periodIndex] * (
marketVertexArray[periodIndex].client().survivalProbability() +
marketVertexArray[periodIndex + 1].client().survivalProbability()
);
}
return unilateralCollateralValueAdjustment;
}
/**
* Compute Path Bilateral Collateral Value Adjustment
*
* @return The Path Bilateral Collateral Value Adjustment
*/
public double bilateralCollateralAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] periodCollateralValueAdjustment = periodCollateralValueAdjustment();
double bilateralCollateralValueAdjustment = 0.;
int periodCount = periodCollateralValueAdjustment.length;
for (int periodIndex = 0; periodIndex < periodCount; ++periodIndex)
{
bilateralCollateralValueAdjustment += 0.5 * periodCollateralValueAdjustment[periodIndex] * (
marketVertexArray[periodIndex].dealer().survivalProbability() *
marketVertexArray[periodIndex].client().survivalProbability() +
marketVertexArray[periodIndex + 1].dealer().survivalProbability() *
marketVertexArray[periodIndex + 1].client().survivalProbability()
);
}
return bilateralCollateralValueAdjustment;
}
/**
* Compute Path Collateral Value Adjustment
*
* @return The Path Collateral Value Adjustment
*/
public double collateralValueAdjustment()
{
return unilateralCollateralAdjustment();
}
/**
* Compute Period-wise Symmetric Funding Value Spread 01
*
* @return The Period-wise Symmetric Funding Value Spread 01
*/
public double[] periodSymmetricFundingValueSpread01()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexCollateralizedExposurePV = vertexCollateralizedExposurePV();
int periodCount = vertexCollateralizedExposurePV.length - 1;
double[] periodSymmetricFundingValueSpread01 = new double[periodCount];
for (int periodIndex = 0; periodIndex < periodCount; ++periodIndex)
{
periodSymmetricFundingValueSpread01[periodIndex] = -0.5 * (
vertexCollateralizedExposurePV[periodIndex] +
vertexCollateralizedExposurePV[periodIndex + 1]
) * (
marketVertexArray[periodIndex + 1].anchorDate().julian() -
marketVertexArray[periodIndex].anchorDate().julian()
) / 365.25;
}
return periodSymmetricFundingValueSpread01;
}
/**
* Compute Period-wise Unilateral Credit Adjustment
*
* @return The Period-wise Unilateral Credit Adjustment
*/
public double[] periodUnilateralCreditAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexCreditExposurePV = vertexCreditExposurePV();
int vertexCount = vertexCreditExposurePV.length;
double[] periodUnilateralCreditAdjustment = new double[vertexCount - 1];
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexCreditExposurePV[vertexIndex - 1] * (1. -
marketVertexArray[vertexIndex - 1].client().seniorRecoveryRate());
double periodIntegrandEnd = vertexCreditExposurePV[vertexIndex] * (1. -
marketVertexArray[vertexIndex].client().seniorRecoveryRate());
periodUnilateralCreditAdjustment[vertexIndex - 1] =
-0.5 * (periodIntegrandStart + periodIntegrandEnd) *
(marketVertexArray[vertexIndex - 1].client().survivalProbability() -
marketVertexArray[vertexIndex].client().survivalProbability());
}
return periodUnilateralCreditAdjustment;
}
/**
* Compute Period-wise Bilateral Credit Adjustment
*
* @return The Period-wise Bilateral Credit Adjustment
*/
public double[] periodBilateralCreditAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexCreditExposurePV = vertexCreditExposurePV();
int vertexCount = vertexCreditExposurePV.length;
double[] periodBilateralCreditAdjustment = new double[vertexCount - 1];
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexCreditExposurePV[vertexIndex - 1] * (1. -
marketVertexArray[vertexIndex - 1].client().seniorRecoveryRate()) *
marketVertexArray[vertexIndex - 1].dealer().survivalProbability();
double periodIntegrandEnd = vertexCreditExposurePV[vertexIndex] * (1. -
marketVertexArray[vertexIndex].client().seniorRecoveryRate()) *
marketVertexArray[vertexIndex].dealer().survivalProbability();
periodBilateralCreditAdjustment[vertexIndex - 1] =
-0.5 * (periodIntegrandStart + periodIntegrandEnd) *
(marketVertexArray[vertexIndex - 1].client().survivalProbability() -
marketVertexArray[vertexIndex].client().survivalProbability());
}
return periodBilateralCreditAdjustment;
}
/**
* Compute Period-wise Contra-Liability Credit Adjustment
*
* @return The Period-wise Contra-Liability Credit Adjustment
*/
public double[] periodContraLiabilityCreditAdjustment()
{
double[] periodUnilateralCreditAdjustment = periodUnilateralCreditAdjustment();
double[] periodBilateralCreditAdjustment = periodBilateralCreditAdjustment();
int vertexCount = periodUnilateralCreditAdjustment.length;
double[] periodContraLiabilityCreditAdjustment = new double[vertexCount];
for (int vertexIndex = 0; vertexIndex < vertexCount; ++vertexIndex)
{
periodContraLiabilityCreditAdjustment[vertexIndex] =
periodUnilateralCreditAdjustment[vertexIndex] -
periodBilateralCreditAdjustment[vertexIndex];
}
return periodContraLiabilityCreditAdjustment;
}
/**
* Compute Period-wise Unilateral Debt Adjustment
*
* @return The Period-wise Unilateral Debt Adjustment
*/
public double[] periodUnilateralDebtAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexDebtExposurePV = vertexDebtExposurePV();
int vertexCount = vertexDebtExposurePV.length;
double[] periodUnilateralDebtAdjustment = new double[vertexCount - 1];
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexDebtExposurePV[vertexIndex - 1] * (1. -
marketVertexArray[vertexIndex - 1].dealer().seniorRecoveryRate());
double periodIntegrandEnd = vertexDebtExposurePV[vertexIndex] * (1. -
marketVertexArray[vertexIndex].dealer().seniorRecoveryRate());
periodUnilateralDebtAdjustment[vertexIndex - 1] =
-0.5 * (periodIntegrandStart + periodIntegrandEnd) *
(marketVertexArray[vertexIndex - 1].dealer().survivalProbability() -
marketVertexArray[vertexIndex].dealer().survivalProbability());
}
return periodUnilateralDebtAdjustment;
}
/**
* Compute Period-wise Bilateral Debt Adjustment
*
* @return The Period-wise Bilateral Debt Adjustment
*/
public double[] periodBilateralDebtAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexDebtExposurePV = vertexDebtExposurePV();
int vertexCount = vertexDebtExposurePV.length;
double[] periodBilateralDebtAdjustment = new double[vertexCount - 1];
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexDebtExposurePV[vertexIndex - 1] * (1. -
marketVertexArray[vertexIndex - 1].dealer().seniorRecoveryRate()) *
marketVertexArray[vertexIndex - 1].client().survivalProbability();
double periodIntegrandEnd = vertexDebtExposurePV[vertexIndex] * (1. -
marketVertexArray[vertexIndex].dealer().seniorRecoveryRate()) *
marketVertexArray[vertexIndex].client().survivalProbability();
periodBilateralDebtAdjustment[vertexIndex - 1] =
-0.5 * (periodIntegrandStart + periodIntegrandEnd) *
(marketVertexArray[vertexIndex - 1].dealer().survivalProbability() -
marketVertexArray[vertexIndex].dealer().survivalProbability());
}
return periodBilateralDebtAdjustment;
}
/**
* Compute Period Unilateral Funding Value Spread 01
*
* @return The Period Unilateral Funding Value Spread 01
*/
public double[] periodUnilateralFundingValueSpread01()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexFundingExposurePV = vertexFundingExposurePV();
int periodCount = vertexFundingExposurePV.length - 1;
double[] periodUnilateralFundingValueSpread01 = new double[periodCount];
for (int periodIndex = 0; periodIndex < periodCount; ++periodIndex)
{
double periodIntegrandStart = vertexFundingExposurePV[periodIndex] *
marketVertexArray[periodIndex].client().survivalProbability();
double periodIntegrandEnd = vertexFundingExposurePV[periodIndex + 1] *
marketVertexArray[periodIndex + 1].client().survivalProbability();
periodUnilateralFundingValueSpread01[periodIndex] =
0.5 * (periodIntegrandStart + periodIntegrandEnd) * (
marketVertexArray[periodIndex + 1].anchorDate().julian() -
marketVertexArray[periodIndex].anchorDate().julian()
) / 365.25;
}
return periodUnilateralFundingValueSpread01;
}
/**
* Compute Period Bilateral Funding Value Spread 01
*
* @return The Period Bilateral Funding Value Spread 01
*/
public double[] periodBilateralFundingValueSpread01()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexFundingExposurePV = vertexFundingExposurePV();
int periodCount = vertexFundingExposurePV.length - 1;
double[] periodBilateralFundingValueSpread01 = new double[periodCount];
for (int periodIndex = 0; periodIndex < periodCount; ++periodIndex)
{
double periodIntegrandStart = vertexFundingExposurePV[periodIndex] *
marketVertexArray[periodIndex].client().survivalProbability() *
marketVertexArray[periodIndex].dealer().survivalProbability();
double periodIntegrandEnd = vertexFundingExposurePV[periodIndex + 1] *
marketVertexArray[periodIndex + 1].client().survivalProbability() *
marketVertexArray[periodIndex + 1].dealer().survivalProbability();
periodBilateralFundingValueSpread01[periodIndex] =
0.5 * (periodIntegrandStart + periodIntegrandEnd) * (
marketVertexArray[periodIndex + 1].anchorDate().julian() -
marketVertexArray[periodIndex].anchorDate().julian()
) / 365.25;
}
return periodBilateralFundingValueSpread01;
}
/**
* Compute Period Unilateral Funding Debt Adjustment
*
* @return The Period Unilateral Funding Debt Adjustment
*/
public double[] periodUnilateralFundingDebtAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexDebtExposurePV = vertexDebtExposurePV();
int vertexCount = vertexDebtExposurePV.length;
double[] periodUnilateralFundingDebtAdjustment = new double[vertexCount - 1];
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexDebtExposurePV[vertexIndex - 1] * (1. -
marketVertexArray[vertexIndex - 1].dealer().seniorRecoveryRate());
double periodIntegrandEnd = vertexDebtExposurePV[vertexIndex] * (1. -
marketVertexArray[vertexIndex].dealer().seniorRecoveryRate());
periodUnilateralFundingDebtAdjustment[vertexIndex - 1] = -0.5 *
(periodIntegrandStart + periodIntegrandEnd) *
(marketVertexArray[vertexIndex - 1].dealer().survivalProbability() -
marketVertexArray[vertexIndex].dealer().survivalProbability());
}
return periodUnilateralFundingDebtAdjustment;
}
/**
* Compute Period Bilateral Funding Debt Adjustment
*
* @return The Period Bilateral Funding Debt Adjustment
*/
public double[] periodBilateralFundingDebtAdjustment()
{
org.drip.exposure.universe.MarketVertex[] marketVertexArray = _marketPath.marketVertexArray();
double[] vertexDebtExposurePV = vertexDebtExposurePV();
int vertexCount = vertexDebtExposurePV.length;
double[] periodBilateralFundingDebtAdjustment = new double[vertexCount - 1];
for (int vertexIndex = 1; vertexIndex < vertexCount; ++vertexIndex)
{
double periodIntegrandStart = vertexDebtExposurePV[vertexIndex - 1] * (1. -
marketVertexArray[vertexIndex - 1].dealer().seniorRecoveryRate()) *
marketVertexArray[vertexIndex - 1].client().survivalProbability();
double periodIntegrandEnd = vertexDebtExposurePV[vertexIndex] * (1. -
marketVertexArray[vertexIndex].dealer().seniorRecoveryRate()) *
marketVertexArray[vertexIndex].client().survivalProbability();
periodBilateralFundingDebtAdjustment[vertexIndex - 1] = -0.5 *
(periodIntegrandStart + periodIntegrandEnd) *
(marketVertexArray[vertexIndex - 1].dealer().survivalProbability() -
marketVertexArray[vertexIndex].dealer().survivalProbability());
}
return periodBilateralFundingDebtAdjustment;
}
/**
* Compute Path Credit Adjustment
*
* @return The Path Credit Adjustment
*/
public abstract double creditAdjustment();
/**
* Compute Path Debt Adjustment
*
* @return The Path Debt Adjustment
*/
public abstract double debtAdjustment();
/**
* Compute Period-wise Credit Adjustment
*
* @return The Period-wise Credit Adjustment
*/
public abstract double[] periodCreditAdjustment();
/**
* Compute Period-wise Debt Adjustment
*
* @return The Period-wise Debt Adjustment
*/
public abstract double[] periodDebtAdjustment();
}