Package | Description |
---|---|
org.drip.measure.bayesian | |
org.drip.portfolioconstruction.bayesian |
Modifier and Type | Method and Description |
---|---|
static JointPosteriorMetrics |
TheilMixedEstimationModel.GenerateComposite(MultivariateMeta meta,
ProjectionDistributionLoading pdl1,
ProjectionDistributionLoading pdl2,
R1MultivariateNormal r1mnUnconditional)
Generate the Joint Mixed Estimation Model Joint/Posterior Metrics
|
static JointPosteriorMetrics |
TheilMixedEstimationModel.GenerateComposite(ScopingProjectionVariateDistribution spvd,
java.lang.String strProjection,
R1MultivariateNormal r1mnUnconditional)
Generate the Combined R^1 Multivariate Normal Distribution from the SPVD, the NATIVE Projection, and
the Named Projection
|
static JointPosteriorMetrics |
TheilMixedEstimationModel.GenerateComposite(ScopingProjectionVariateDistribution spvd,
java.lang.String strProjection1,
java.lang.String strProjection2,
R1MultivariateNormal r1mnUnconditional)
Generate the Combined R^1 Multivariate Normal Distribution from the SPVD and the Named Projections
|
JointPosteriorMetrics |
JointR1NormalCombinationEngine.process(R1Multivariate r1mPrior,
R1Multivariate r1mUnconditional,
R1Multivariate r1mConditional) |
JointPosteriorMetrics |
JointR1CombinationEngine.process(R1Multivariate rmPrior,
R1Multivariate rmUnconditional,
R1Multivariate rmConditional)
Generate the Joint R^1 Multivariate Combined Distribution
|
Modifier and Type | Method and Description |
---|---|
JointPosteriorMetrics |
BlackLittermanCustomConfidenceOutput.combinationMetrics()
Retrieve the Bayesian Joint/Posterior Metrics
|
Constructor and Description |
---|
BlackLittermanCustomConfidenceOutput(ForwardReverseOptimizationOutput frooAdjusted,
double[] adblAllocationAdjustmentTilt,
JointPosteriorMetrics jpm)
BlackLittermanCustomConfidenceOutput Constructor
|