Package | Description |
---|---|
org.drip.spline.basis | |
org.drip.spline.bspline | |
org.drip.spline.segment | |
org.drip.spline.tension |
Modifier and Type | Method and Description |
---|---|
static FunctionSet |
FunctionSetBuilder.BernsteinPolynomialBasisSet(PolynomialFunctionSetParams pfsp)
This function implements the elastic coefficients for the segment using Bernstein polynomial basis
splines inside - [0,...,1) - Globally [x_0,...,x_1):
y = Sum (A_i*B^i(x)) i = 0,...,n (0 and n inclusive)
where x is the normalized ordinate mapped as
x .gte.
|
static FunctionSet |
FunctionSetBuilder.BSplineBasisSet(BSplineSequenceParams bssp)
Construct the BSpline Basis Function Set
|
static FunctionSet |
FunctionSetBuilder.ExponentialMixtureBasisSet(ExponentialMixtureSetParams emsp)
Construct the Exponential Mixture Basis Set
y = A + B * exp(-l_1 * x) + C * exp(-l_2 * x) + D * exp(-l_3 * x)
|
static FunctionSet |
FunctionSetBuilder.ExponentialRationalBasisSet(ExponentialRationalSetParams ersp)
Construct the Exponential Rational Basis Set
y = A + B / (1+x) + C * exp(-x) + D * exp(-x) / (1+x)
|
static FunctionSet |
FunctionSetBuilder.ExponentialTensionBasisSet(ExponentialTensionSetParams etsp)
This function implements the elastic coefficients for the segment using tension exponential basis
splines inside - [0,...,1) - Globally [x_0,...,x_1).
|
static FunctionSet |
FunctionSetBuilder.HyperbolicTensionBasisSet(ExponentialTensionSetParams etsp)
This function implements the elastic coefficients for the segment using tension hyperbolic basis
splines inside - [0,...,1) - Globally [x_0,...,x_1).
|
static FunctionSet |
FunctionSetBuilder.KaklisPandelisBasisSet(KaklisPandelisSetParams kpsp)
Construct KaklisPandelis from the polynomial tension basis function set
y = A * (1-x) + B * x + C * x * (1-x)^m + D * x^m * (1-x)
|
static FunctionSet |
FunctionSetBuilder.PolynomialBasisSet(PolynomialFunctionSetParams pfsp)
This function implements the elastic coefficients for the segment using polynomial basis splines
inside [0,...,1) - Globally [x_0,...,x_1):
y = Sum (A_i*x^i) i = 0,...,n (0 and n inclusive)
where x is the normalized ordinate mapped as
x .gte.
|
Modifier and Type | Class and Description |
---|---|
class |
SegmentBasisFunctionSet
SegmentBasisFunctionSet class implements per-segment function set for B Splines and tension splines.
|
Modifier and Type | Method and Description |
---|---|
static LatentStateResponseModel |
LatentStateResponseModel.Create(double dblLeftPredictorOrdinate,
double dblRightPredictorOrdinate,
FunctionSet fs,
ResponseScalingShapeControl rssc,
SegmentInelasticDesignControl sidc)
Build the LatentStateResponseModel instance from the Basis Function/Shape Controller Set
|
Constructor and Description |
---|
SegmentBasisEvaluator(FunctionSet fs,
ResponseScalingShapeControl rssc)
SegmentBasisEvaluator constructor
|
Modifier and Type | Method and Description |
---|---|
static FunctionSet |
KochLycheKvasovFamily.FromExponentialPrimitive(ExponentialTensionSetParams etsp)
Implement the Basis Function Set from the Cubic Polynomial Numerator and Exponential Denominator
|
static FunctionSet |
KochLycheKvasovFamily.FromHyperbolicPrimitive(ExponentialTensionSetParams etsp)
Implement the Basis Function Set from the Hyperbolic Hat Primitive Set
|
static FunctionSet |
KochLycheKvasovFamily.FromRationalLinearPrimitive(ExponentialTensionSetParams etsp)
Implement the Basis Function Set from the Cubic Polynomial Numerator and Linear Rational Denominator
|
static FunctionSet |
KochLycheKvasovFamily.FromRationalQuadraticPrimitive(ExponentialTensionSetParams etsp)
Implement the Basis Function Set from the Cubic Polynomial Numerator and Quadratic Rational
Denominator
|