Class R1FokkerPlanckCIR

java.lang.Object

public class R1FokkerPlanckCIR
extends R1FokkerPlanckCKLS
R1FokkerPlanckCIR exposes the R1 Cox-Ingersoll-Ross Probability Density Function Evolution Equation. The References are:

  • Bogoliubov, N. N., and D. P. Sankevich (1994): N. N. Bogoliubov and Statistical Mechanics Russian Mathematical Surveys 49 (5) 19-49
  • Holubec, V., K. Kroy, and S. Steffenoni (2019): Physically Consistent Numerical Solver for Time-dependent Fokker-Planck Equations Physical Review E 99 (4) 032117
  • Kadanoff, L. P. (2000): Statistical Physics: Statics, Dynamics, and Re-normalization World Scientific
  • Ottinger, H. C. (1996): Stochastic Processes in Polymeric Fluids Springer-Verlag Berlin-Heidelberg
  • Wikipedia (2019): Fokker-Planck Equation https://en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation


Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • R1FokkerPlanckCIR

      public R1FokkerPlanckCIR​(CKLSParameters cklsParameters) throws java.lang.Exception
      R1FokkerPlanckCIR Constructor
      Parameters:
      cklsParameters - The CKLS Parameters
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • steadyStatePDF

      public R1ToR1 steadyStatePDF()
      Description copied from class: R1FokkerPlanck
      Compute the Steady-State Probability Distribution Function, if any
      Overrides:
      steadyStatePDF in class R1FokkerPlanck
      Returns:
      The Steady-State Probability Distribution Function
    • deltaStartTemporalPDF

      public R1ProbabilityDensityFunction deltaStartTemporalPDF​(double r0)
      Description copied from class: R1FokkerPlanck
      Compute the Temporal Probability Distribution Function given the Delta 0 Starting PDF
      Overrides:
      deltaStartTemporalPDF in class R1FokkerPlanck
      Parameters:
      r0 - The X Anchor for the Delta Function
      Returns:
      The Temporal Probability Distribution Function given the Delta 0 Starting PDF