Package org.drip.dynamics.kolmogorov
Class R1FokkerPlanckCKLS
java.lang.Object
org.drip.dynamics.kolmogorov.R1FokkerPlanck
org.drip.dynamics.kolmogorov.R1FokkerPlanckCKLS
- Direct Known Subclasses:
R1FokkerPlanckCIR
,R1FokkerPlanckOrnsteinUhlenbeck
public class R1FokkerPlanckCKLS extends R1FokkerPlanck
R1FokkerPlanckCKLS exposes the R1 Chan-Karolyi-Longstaff-Sanders 1992 Probability
Density Function Evolution Equation. The References are:
- Bogoliubov, N. N., and D. P. Sankevich (1994): N. N. Bogoliubov and Statistical Mechanics Russian Mathematical Surveys 49 (5) 19-49
- Holubec, V., K. Kroy, and S. Steffenoni (2019): Physically Consistent Numerical Solver for Time-dependent Fokker-Planck Equations Physical Review E 99 (4) 032117
- Kadanoff, L. P. (2000): Statistical Physics: Statics, Dynamics, and Re-normalization World Scientific
- Ottinger, H. C. (1996): Stochastic Processes in Polymeric Fluids Springer-Verlag Berlin-Heidelberg
- Wikipedia (2019): Fokker-Planck Equation https://en.wikipedia.org/wiki/Fokker%E2%80%93Planck_equation
- Module = Product Core Module
- Library = Fixed Income Analytics
- Project = HJM, Hull White, LMM, and SABR Dynamic Evolution Models
- Package = Fokker Planck Kolmogorov Forward/Backward
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description R1FokkerPlanckCKLS(CKLSParameters cklsParameters)
R1FokkerPlanckCKLS Constructor -
Method Summary
Modifier and Type Method Description CKLSParameters
cklsParameters()
Retrieve the CKLS ParametersMethods inherited from class org.drip.dynamics.kolmogorov.R1FokkerPlanck
deltaStartTemporalPDF, driftFunction, pdfDot, steadyStatePDF, temporalPDF, volatilityFunction
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
R1FokkerPlanckCKLS
R1FokkerPlanckCKLS Constructor- Parameters:
cklsParameters
- The CKLS Parameters- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
cklsParameters
Retrieve the CKLS Parameters- Returns:
- The CKLS Parameters
-