Package org.drip.execution.bayesian
Class PriorDriftDistribution
java.lang.Object
org.drip.measure.continuous.R1Univariate
org.drip.measure.gaussian.R1UnivariateNormal
org.drip.execution.bayesian.PriorDriftDistribution
public class PriorDriftDistribution extends R1UnivariateNormal
PriorDriftDistribution holds the Prior Belief Distribution associated with the Directional Drift.
It provides the following Functions:
- Construct an Instance of PriorDriftDistribution
- Retrieve the Expectation of the Prior Drift Distribution
- Retrieve the Confidence of the Prior Drift Distribution
- Generate the given Number of Bayesian Drift Realizations
- Bertsimas, D., and A. W. Lo (1998): Optimal Control of Execution Costs Journal of Financial Markets 1 1-50
- Almgren, R., and N. Chriss (2000): Optimal Execution of Portfolio Transactions Journal of Risk 3 (2) 5-39
- Brunnermeier, L. K., and L. H. Pedersen (2005): Predatory Trading Journal of Finance 60 (4) 1825-1863
- Almgren, R., and J. Lorenz (2006): Bayesian Adaptive Trading with a Daily Cycle Journal of Trading 1 (4) 38-46
- Kissell, R., and R. Malamut (2007): Algorithmic Decision Making Framework Journal of Trading 1 (1) 12-21
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description PriorDriftDistribution(double expectation, double confidence)Construct an Instance of PriorDriftDistribution -
Method Summary
Modifier and Type Method Description doubleconfidence()Retrieve the Confidence of the Prior Drift Distributiondoubleexpectation()Retrieve the Expectation of the Prior Drift Distributiondouble[]realizedDriftArray(int realizationCount)Generate the given Number of Bayesian Drift RealizationsMethods inherited from class org.drip.measure.gaussian.R1UnivariateNormal
confidence, confidenceInterval, cumulative, density, errorFunction, histogram, incremental, invCumulative, mean, median, mode, random, sigma, Standard, support, varianceMethods inherited from class org.drip.measure.continuous.R1Univariate
bPOE, centralMoment, cvar, differentialEntropy, excessKurtosis, expectedShortfall, fisherInformation, iqr, kullbackLeiblerDivergence, momentGeneratingFunction, nonCentralMoment, populationCentralMeasures, probabilityGeneratingFunction, quantile, randomArray, skewness, supported, tukeyAnomaly, tukeyCriterionMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
PriorDriftDistribution
public PriorDriftDistribution(double expectation, double confidence) throws java.lang.ExceptionConstruct an Instance of PriorDriftDistribution- Parameters:
expectation- Expectation of the Prior Driftconfidence- Confidence of the Prior Drift- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
-
Method Details
-
expectation
public double expectation()Retrieve the Expectation of the Prior Drift Distribution- Returns:
- The Expectation of the Prior Drift Distribution
-
confidence
public double confidence()Retrieve the Confidence of the Prior Drift Distribution- Returns:
- The Confidence of the Prior Drift Distribution
-
realizedDriftArray
public double[] realizedDriftArray(int realizationCount)Generate the given Number of Bayesian Drift Realizations- Parameters:
realizationCount- The Number of Realizations to be generated- Returns:
- Array of the Drift Realizations
-