Class R1UnivariateNormal

java.lang.Object
org.drip.measure.distribution.R1Continuous
org.drip.measure.gaussian.R1UnivariateNormal
Direct Known Subclasses:
ConditionalPriceDistribution, PriorDriftDistribution, ShortfallIncrementDistribution

public class R1UnivariateNormal
extends R1Continuous
R1UnivariateNormal implements the Univariate R1 Normal Distribution. It implements the Incremental, the Cumulative, and the Inverse Cumulative Distribution Densities. It provides the following Functionality:
  • Generate a N (0, 1) distribution
  • Construct a R1 Normal/Gaussian Distribution
  • Retrieve the Sigma
  • Lay out the Support of the PDF Range
  • Compute the cumulative under the distribution to the given value
  • Compute the Incremental under the Distribution between the 2 variates
  • Compute the inverse cumulative under the distribution corresponding to the given value
  • Compute the Density under the Distribution at the given Variate
  • Retrieve the Mean of the Distribution
  • Retrieve the Median of the Distribution
  • Retrieve the Mode of the Distribution
  • Retrieve the Variance of the Distribution
  • Retrieve the Univariate Weighted Histogram
  • Generate a Random Variable corresponding to the Distribution
  • Compute the Error Function Around an Absolute Width around the Mean
  • Compute the Confidence given the Width around the Mean
  • Compute the Width around the Mean given the Confidence Level

Module Computational Core Module
Library Numerical Analysis Library
Project Rd Continuous/Discrete Probability Measures
Package R1 Covariant Gaussian Quadrature

Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • R1UnivariateNormal

      public R1UnivariateNormal​(double mean, double sigma) throws java.lang.Exception
      Construct a R1 Normal/Gaussian Distribution
      Parameters:
      mean - Mean of the Distribution
      sigma - Sigma of the Distribution
      Throws:
      java.lang.Exception - Thrown if the inputs are invalid
  • Method Details

    • Standard

      public static final R1UnivariateNormal Standard()
      Generate a N (0, 1) distribution
      Returns:
      The N (0, 1) distribution
    • sigma

      public double sigma()
      Retrieve the Sigma
      Returns:
      The Sigma
    • support

      public double[] support()
      Lay out the Support of the PDF Range
      Specified by:
      support in class R1Continuous
      Returns:
      Support of the PDF Range
    • cumulative

      public double cumulative​(double x) throws java.lang.Exception
      Compute the cumulative under the distribution to the given value
      Overrides:
      cumulative in class R1Continuous
      Parameters:
      x - Variate to which the cumulative is to be computed
      Returns:
      The cumulative
      Throws:
      java.lang.Exception - Thrown if the inputs are invalid
    • incremental

      public double incremental​(double xLeft, double xRight) throws java.lang.Exception
      Compute the Incremental under the Distribution between the 2 variates
      Overrides:
      incremental in class R1Continuous
      Parameters:
      xLeft - Left Variate to which the cumulative is to be computed
      xRight - Right Variate to which the cumulative is to be computed
      Returns:
      The Incremental under the Distribution between the 2 variates
      Throws:
      java.lang.Exception - Thrown if the inputs are invalid
    • invCumulative

      public double invCumulative​(double y) throws java.lang.Exception
      Compute the inverse cumulative under the distribution corresponding to the given value
      Overrides:
      invCumulative in class R1Continuous
      Parameters:
      y - Value corresponding to which the inverse cumulative is to be computed
      Returns:
      The inverse cumulative
      Throws:
      java.lang.Exception - Thrown if the Input is invalid
    • density

      public double density​(double x) throws java.lang.Exception
      Compute the Density under the Distribution at the given Variate
      Specified by:
      density in class R1Continuous
      Parameters:
      x - Variate at which the Density needs to be computed
      Returns:
      The Density
      Throws:
      java.lang.Exception - Thrown if the input is invalid
    • mean

      public double mean()
      Retrieve the Mean of the Distribution
      Overrides:
      mean in class R1Continuous
      Returns:
      The Mean of the Distribution
      Throws:
      java.lang.Exception - Thrown if the Mean cannot be estimated
    • median

      public double median()
      Retrieve the Median of the Distribution
      Overrides:
      median in class R1Continuous
      Returns:
      The Median of the Distribution
      Throws:
      java.lang.Exception - Thrown if the Median cannot be estimated
    • mode

      public double mode()
      Retrieve the Mode of the Distribution
      Overrides:
      mode in class R1Continuous
      Returns:
      The Mode of the Distribution
      Throws:
      java.lang.Exception - Thrown if the Mode cannot be estimated
    • variance

      public double variance()
      Retrieve the Variance of the Distribution
      Overrides:
      variance in class R1Continuous
      Returns:
      The Variance of the Distribution
      Throws:
      java.lang.Exception - Thrown if the Variance cannot be estimated
    • histogram

      public Array2D histogram()
      Retrieve the Univariate Weighted Histogram
      Overrides:
      histogram in class R1Continuous
      Returns:
      The Univariate Weighted Histogram
    • random

      public double random()
      Generate a Random Variable corresponding to the Distribution
      Overrides:
      random in class R1Continuous
      Returns:
      Random Variable corresponding to the Distribution
      Throws:
      java.lang.Exception - Thrown if the Random Instance cannot be estimated
    • errorFunction

      public double errorFunction​(double x) throws java.lang.Exception
      Compute the Error Function Around an Absolute Width around the Mean
      Parameters:
      x - The Width
      Returns:
      The Error Function Around an Absolute Width around the Mean
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
    • confidence

      public double confidence​(double width) throws java.lang.Exception
      Compute the Confidence given the Width around the Mean
      Parameters:
      width - The Width
      Returns:
      The Error Function Around an Absolute Width around the Mean
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
    • confidenceInterval

      public double confidenceInterval​(double confidence) throws java.lang.Exception
      Compute the Width around the Mean given the Confidence Level
      Parameters:
      confidence - The Confidence Level
      Returns:
      The Width around the Mean given the Confidence Level
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid