Package org.drip.learning.kernel
Class IntegralOperator
java.lang.Object
org.drip.learning.kernel.IntegralOperator
public abstract class IntegralOperator
extends java.lang.Object
IntegralOperator implements the Rx L2 To Rx L2 Mercer
Kernel Integral Operator defined by:
T_k [f(.)] := Integral Over Input Space {k (., y) * f(y) * d[Prob(y)]}
The References are:
The References are:
- Ash, R. (1965): Information Theory Inter-science New York
- Konig, H. (1986): Eigenvalue Distribution of Compact Operators Birkhauser Basel, Switzerland
- Smola, A. J., A. Elisseff, B. Scholkopf, and R. C. Williamson (2000): Entropy Numbers for Convex Combinations and mlps, in: Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans - editors MIT Press Cambridge, MA
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Statistical Learning Banach Mercer Kernels
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description IntegralOperator(SymmetricRdToNormedR1Kernel kernel, RdToR1 funcRdToR1, R1Normed r1OperatorOutput)
IntegralOperator Constructor -
Method Summary
Modifier and Type Method Description double
computeOperatorIntegral(double[] adblX)
Compute the Operator's Kernel Integral across the specified X Variate Instanceabstract IntegralOperatorEigenContainer
eigenize()
Eigenize the Kernel Integral OperatorRd
inputSpaceBorelMeasure()
Retrieve the Input Space Borel Sigma Measureboolean
isPositiveDefinite(double[] adblX)
Indicate the Kernel Operator Integral's Positive-definiteness across the specified X Variate InstanceSymmetricRdToNormedR1Kernel
kernel()
Retrieve the Symmetric R^d To R^1 KernelRdToR1
kernelOperatorFunction()
Retrieve the R^d To R^1 Kernel Operator FunctionR1Normed
outputVectorMetricSpace()
Retrieve the Kernel Integral Operator Output SpaceMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
IntegralOperator
public IntegralOperator(SymmetricRdToNormedR1Kernel kernel, RdToR1 funcRdToR1, R1Normed r1OperatorOutput) throws java.lang.ExceptionIntegralOperator Constructor- Parameters:
kernel
- The Symmetric Mercer Kernel - this should be R^x L2 X R^x L2 To R^1funcRdToR1
- The R^d To R^1 Operator Functionr1OperatorOutput
- The Kernel Integral Operator Output Space - this is R^1 L2- Throws:
java.lang.Exception
- Thrown if the Inputs are invalid
-
-
Method Details
-
kernel
Retrieve the Symmetric R^d To R^1 Kernel- Returns:
- The Symmetric R^d To R^1 Kernel
-
kernelOperatorFunction
Retrieve the R^d To R^1 Kernel Operator Function- Returns:
- The R^d To R^1 Kernel Operator Function
-
inputSpaceBorelMeasure
Retrieve the Input Space Borel Sigma Measure- Returns:
- The Input Space Borel Sigma Measure
-
outputVectorMetricSpace
Retrieve the Kernel Integral Operator Output Space- Returns:
- The Kernel Integral Operator Output Space
-
computeOperatorIntegral
public double computeOperatorIntegral(double[] adblX) throws java.lang.ExceptionCompute the Operator's Kernel Integral across the specified X Variate Instance- Parameters:
adblX
- Validated Vector Instance X- Returns:
- The Operator's Kernel Integral across the specified X Variate Instance
- Throws:
java.lang.Exception
- Thrown if the Inputs are invalid
-
isPositiveDefinite
public boolean isPositiveDefinite(double[] adblX)Indicate the Kernel Operator Integral's Positive-definiteness across the specified X Variate Instance- Parameters:
adblX
- Validated Vector Instance X- Returns:
- TRUE - The Kernel Operator Integral is Positive Definite across the specified X Variate Instance
-
eigenize
Eigenize the Kernel Integral Operator- Returns:
- The Eigenization Output
-