Package org.drip.learning.kernel
Class IntegralOperatorEigenContainer
java.lang.Object
org.drip.learning.kernel.IntegralOperatorEigenContainer
public class IntegralOperatorEigenContainer
extends java.lang.Object
IntegralOperatorEigenContainer holds the Group of Eigen-Components that result from the
Eigenization of the Rx L2 To Rx L2 Kernel Linear Integral
Operator defined by:
T_k [f(.)] := Integral Over Input Space {k (., y) * f(y) * d[Prob(y)]}
The References are:
The References are:
- Ash, R. (1965): Information Theory Inter-science New York
- Carl, B., and I. Stephani (1990): Entropy, Compactness, and Approximation of Operators Cambridge University Press Cambridge UK
- Gordon, Y., H. Konig, and C. Schutt (1987): Geometric and Probabilistic Estimates of Entropy and Approximation Numbers of Operators Journal of Approximation Theory 49 219-237
- Konig, H. (1986): Eigenvalue Distribution of Compact Operators Birkhauser Basel, Switzerland
- Smola, A. J., A. Elisseff, B. Scholkopf, and R. C. Williamson (2000): Entropy Numbers for Convex Combinations and mlps, in: Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans - editors MIT Press Cambridge, MA
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Statistical Learning Banach Mercer Kernels
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description IntegralOperatorEigenContainer(IntegralOperatorEigenComponent[] aIOEC)
IntegralOperatorEigenContainer Constructor -
Method Summary
Modifier and Type Method Description R1Combinatorial
diagonallyScaledFeatureSpace(DiagonalScalingOperator dso)
Generate the Diagonally Scaled Normed Vector Space of the RKHS Feature Space Bounds that results on applying the Diagonal Scaling OperatorIntegralOperatorEigenComponent[]
eigenComponents()
Retrieve the Array of the Integral Operator Eigen-ComponentsRdNormed
inputMetricVectorSpace()
Retrieve the Eigen Input SpaceR1Normed
outputMetricVectorSpace()
Retrieve the Eigen Output SpaceOperatorClassCoveringBounds
scaledCoveringNumberBounds(DiagonalScalingOperator dso)
Generate the Operator Class Covering Number Bounds of the RKHS Feature Space Bounds that result on the Application of the Diagonal Scaling OperatorMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
IntegralOperatorEigenContainer
public IntegralOperatorEigenContainer(IntegralOperatorEigenComponent[] aIOEC) throws java.lang.ExceptionIntegralOperatorEigenContainer Constructor- Parameters:
aIOEC
- Array of the Integral Operator Eigen-Components- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
eigenComponents
Retrieve the Array of the Integral Operator Eigen-Components- Returns:
- The Array of the Integral Operator Eigen-Components
-
inputMetricVectorSpace
Retrieve the Eigen Input Space- Returns:
- The Eigen Input Space
-
outputMetricVectorSpace
Retrieve the Eigen Output Space- Returns:
- The Eigen Output Space
-
diagonallyScaledFeatureSpace
Generate the Diagonally Scaled Normed Vector Space of the RKHS Feature Space Bounds that results on applying the Diagonal Scaling Operator- Parameters:
dso
- The Diagonal Scaling Operator- Returns:
- The Diagonally Scaled Normed Vector Space of the RKHS Feature Space
-
scaledCoveringNumberBounds
Generate the Operator Class Covering Number Bounds of the RKHS Feature Space Bounds that result on the Application of the Diagonal Scaling Operator- Parameters:
dso
- The Diagonal Scaling Operator- Returns:
- The Operator Class Covering Number Bounds of the RKHS Feature Space
-