Class IntegralOperatorEigenContainer

java.lang.Object
org.drip.learning.kernel.IntegralOperatorEigenContainer

public class IntegralOperatorEigenContainer
extends java.lang.Object
IntegralOperatorEigenContainer holds the Group of Eigen-Components that result from the Eigenization of the Rx L2 To Rx L2 Kernel Linear Integral Operator defined by: T_k [f(.)] := Integral Over Input Space {k (., y) * f(y) * d[Prob(y)]}

The References are:

  • Ash, R. (1965): Information Theory Inter-science New York
  • Carl, B., and I. Stephani (1990): Entropy, Compactness, and Approximation of Operators Cambridge University Press Cambridge UK
  • Gordon, Y., H. Konig, and C. Schutt (1987): Geometric and Probabilistic Estimates of Entropy and Approximation Numbers of Operators Journal of Approximation Theory 49 219-237
  • Konig, H. (1986): Eigenvalue Distribution of Compact Operators Birkhauser Basel, Switzerland
  • Smola, A. J., A. Elisseff, B. Scholkopf, and R. C. Williamson (2000): Entropy Numbers for Convex Combinations and mlps, in: Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans - editors MIT Press Cambridge, MA


Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • IntegralOperatorEigenContainer

      public IntegralOperatorEigenContainer​(IntegralOperatorEigenComponent[] aIOEC) throws java.lang.Exception
      IntegralOperatorEigenContainer Constructor
      Parameters:
      aIOEC - Array of the Integral Operator Eigen-Components
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • eigenComponents

      public IntegralOperatorEigenComponent[] eigenComponents()
      Retrieve the Array of the Integral Operator Eigen-Components
      Returns:
      The Array of the Integral Operator Eigen-Components
    • inputMetricVectorSpace

      public RdNormed inputMetricVectorSpace()
      Retrieve the Eigen Input Space
      Returns:
      The Eigen Input Space
    • outputMetricVectorSpace

      public R1Normed outputMetricVectorSpace()
      Retrieve the Eigen Output Space
      Returns:
      The Eigen Output Space
    • diagonallyScaledFeatureSpace

      public R1Combinatorial diagonallyScaledFeatureSpace​(DiagonalScalingOperator dso)
      Generate the Diagonally Scaled Normed Vector Space of the RKHS Feature Space Bounds that results on applying the Diagonal Scaling Operator
      Parameters:
      dso - The Diagonal Scaling Operator
      Returns:
      The Diagonally Scaled Normed Vector Space of the RKHS Feature Space
    • scaledCoveringNumberBounds

      public OperatorClassCoveringBounds scaledCoveringNumberBounds​(DiagonalScalingOperator dso)
      Generate the Operator Class Covering Number Bounds of the RKHS Feature Space Bounds that result on the Application of the Diagonal Scaling Operator
      Parameters:
      dso - The Diagonal Scaling Operator
      Returns:
      The Operator Class Covering Number Bounds of the RKHS Feature Space