Package org.drip.learning.kernel
Class IntegralOperatorEigenComponent
java.lang.Object
org.drip.learning.kernel.IntegralOperatorEigenComponent
public class IntegralOperatorEigenComponent
extends java.lang.Object
IntegralOperatorEigenComponent holds the Eigen-Function Space and the Eigenvalue Functions/Spaces
of the Rx L2 To Rx L2 Kernel Linear Integral Operator defined
by:
T_k [f(.)] := Integral Over Input Space {k (., y) * f(y) * d[Prob(y)]}
The References are:
The References are:
- Ash, R. (1965): Information Theory Inter-science New York
- Konig, H. (1986): Eigenvalue Distribution of Compact Operators Birkhauser Basel, Switzerland
- Smola, A. J., A. Elisseff, B. Scholkopf, and R. C. Williamson (2000): Entropy Numbers for Convex Combinations and mlps, in: Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans - editors MIT Press Cambridge, MA
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Statistical Learning Banach Mercer Kernels
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description IntegralOperatorEigenComponent(EigenFunctionRdToR1 efRdToR1, double dblEigenValue)
IntegralOperatorEigenComponent Constructor -
Method Summary
Modifier and Type Method Description EigenFunctionRdToR1
eigenFunction()
Retrieve the Eigen-Functiondouble
eigenvalue()
Retrieve the Eigenvaluedouble
evaluate(double[] adblX, double[] adblY)
Compute the Eigen-Component Contribution to the Kernel ValueNormedRdToNormedR1
rkhsFeatureMap()
Retrieve the Feature Map Space represented via the Reproducing Kernel Hilbert Spacedouble
rkhsFeatureParallelepipedLength()
Retrieve the RKHS Feature Map Parallelepiped Agnostic Upper Bound LengthMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
IntegralOperatorEigenComponent
public IntegralOperatorEigenComponent(EigenFunctionRdToR1 efRdToR1, double dblEigenValue) throws java.lang.ExceptionIntegralOperatorEigenComponent Constructor- Parameters:
efRdToR1
- Normed R^d To Normed R^1 Eigen-FunctiondblEigenValue
- The Eigenvalue- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
eigenFunction
Retrieve the Eigen-Function- Returns:
- The Eigen-Function
-
eigenvalue
public double eigenvalue()Retrieve the Eigenvalue- Returns:
- The Eigenvalue
-
rkhsFeatureMap
Retrieve the Feature Map Space represented via the Reproducing Kernel Hilbert Space- Returns:
- The Feature Map Space representation using the Reproducing Kernel Hilbert Space
-
rkhsFeatureParallelepipedLength
public double rkhsFeatureParallelepipedLength()Retrieve the RKHS Feature Map Parallelepiped Agnostic Upper Bound Length- Returns:
- The RKHS Feature Map Parallelepiped Agnostic Upper Bound Length
-
evaluate
public double evaluate(double[] adblX, double[] adblY) throws java.lang.ExceptionCompute the Eigen-Component Contribution to the Kernel Value- Parameters:
adblX
- The X Variate ArrayadblY
- The Y Variate Array- Returns:
- The Eigen-Component Contribution to the Kernel Value
- Throws:
java.lang.Exception
- Thrown if the Inputs are invalid
-