Package org.drip.learning.kernel
Class IntegralOperatorEigenComponent
java.lang.Object
org.drip.learning.kernel.IntegralOperatorEigenComponent
public class IntegralOperatorEigenComponent
extends java.lang.Object
IntegralOperatorEigenComponent holds the Eigen-Function Space and the Eigenvalue Functions/Spaces
of the Rx L2 To Rx L2 Kernel Linear Integral Operator defined
by:
T_k [f(.)] := Integral Over Input Space {k (., y) * f(y) * d[Prob(y)]}
The References are:
The References are:
- Ash, R. (1965): Information Theory Inter-science New York
- Konig, H. (1986): Eigenvalue Distribution of Compact Operators Birkhauser Basel, Switzerland
- Smola, A. J., A. Elisseff, B. Scholkopf, and R. C. Williamson (2000): Entropy Numbers for Convex Combinations and mlps, in: Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans - editors MIT Press Cambridge, MA
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Statistical Learning Banach Mercer Kernels
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description IntegralOperatorEigenComponent(EigenFunctionRdToR1 efRdToR1, double dblEigenValue)IntegralOperatorEigenComponent Constructor -
Method Summary
Modifier and Type Method Description EigenFunctionRdToR1eigenFunction()Retrieve the Eigen-Functiondoubleeigenvalue()Retrieve the Eigenvaluedoubleevaluate(double[] adblX, double[] adblY)Compute the Eigen-Component Contribution to the Kernel ValueNormedRdToNormedR1rkhsFeatureMap()Retrieve the Feature Map Space represented via the Reproducing Kernel Hilbert SpacedoublerkhsFeatureParallelepipedLength()Retrieve the RKHS Feature Map Parallelepiped Agnostic Upper Bound LengthMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
IntegralOperatorEigenComponent
public IntegralOperatorEigenComponent(EigenFunctionRdToR1 efRdToR1, double dblEigenValue) throws java.lang.ExceptionIntegralOperatorEigenComponent Constructor- Parameters:
efRdToR1- Normed R^d To Normed R^1 Eigen-FunctiondblEigenValue- The Eigenvalue- Throws:
java.lang.Exception- Thrown if the Inputs are Invalid
-
-
Method Details
-
eigenFunction
Retrieve the Eigen-Function- Returns:
- The Eigen-Function
-
eigenvalue
public double eigenvalue()Retrieve the Eigenvalue- Returns:
- The Eigenvalue
-
rkhsFeatureMap
Retrieve the Feature Map Space represented via the Reproducing Kernel Hilbert Space- Returns:
- The Feature Map Space representation using the Reproducing Kernel Hilbert Space
-
rkhsFeatureParallelepipedLength
public double rkhsFeatureParallelepipedLength()Retrieve the RKHS Feature Map Parallelepiped Agnostic Upper Bound Length- Returns:
- The RKHS Feature Map Parallelepiped Agnostic Upper Bound Length
-
evaluate
public double evaluate(double[] adblX, double[] adblY) throws java.lang.ExceptionCompute the Eigen-Component Contribution to the Kernel Value- Parameters:
adblX- The X Variate ArrayadblY- The Y Variate Array- Returns:
- The Eigen-Component Contribution to the Kernel Value
- Throws:
java.lang.Exception- Thrown if the Inputs are invalid
-