Class MercerKernel

java.lang.Object
org.drip.learning.kernel.SymmetricRdToNormedR1Kernel
org.drip.learning.kernel.MercerKernel

public class MercerKernel
extends SymmetricRdToNormedR1Kernel
MercerKernel exposes the Functionality behind the Eigenized Kernel that is Normed Rx X Normed Rx To Supremum R1

The References are:

  • Ash, R. (1965): Information Theory Inter-science New York
  • Konig, H. (1986): Eigenvalue Distribution of Compact Operators Birkhauser Basel, Switzerland
  • Smola, A. J., A. Elisseff, B. Scholkopf, and R. C. Williamson (2000): Entropy Numbers for Convex Combinations and mlps, in: Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans - editors MIT Press Cambridge, MA


Author:
Lakshmi Krishnamurthy
  • Constructor Details

    • MercerKernel

      public MercerKernel​(IntegralOperatorEigenContainer ioec) throws java.lang.Exception
      MercerKernel Constructor
      Parameters:
      ioec - The Container of the Eigen Components
      Throws:
      java.lang.Exception - Thrown if the Inputs are Invalid
  • Method Details

    • eigenComponentSuite

      public IntegralOperatorEigenContainer eigenComponentSuite()
      Retrieve the Suite of Eigen Components
      Returns:
      The Suite of Eigen Components
    • evaluate

      public double evaluate​(double[] adblX, double[] adblY) throws java.lang.Exception
      Description copied from class: SymmetricRdToNormedR1Kernel
      Compute the Kernel's R^d X R^d To R^1 Value
      Specified by:
      evaluate in class SymmetricRdToNormedR1Kernel
      Parameters:
      adblX - Validated Vector Instance X
      adblY - Validated Vector Instance Y
      Returns:
      The Kernel's R^d X R^d To R^1 Value
      Throws:
      java.lang.Exception - Thrown if the Inputs are invalid