Package org.drip.learning.kernel
Class MercerKernel
java.lang.Object
org.drip.learning.kernel.SymmetricRdToNormedR1Kernel
org.drip.learning.kernel.MercerKernel
public class MercerKernel extends SymmetricRdToNormedR1Kernel
MercerKernel exposes the Functionality behind the Eigenized Kernel that is Normed Rx X
Normed Rx To Supremum R1
The References are:
The References are:
- Ash, R. (1965): Information Theory Inter-science New York
- Konig, H. (1986): Eigenvalue Distribution of Compact Operators Birkhauser Basel, Switzerland
- Smola, A. J., A. Elisseff, B. Scholkopf, and R. C. Williamson (2000): Entropy Numbers for Convex Combinations and mlps, in: Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Scholkopf, and D. Schuurmans - editors MIT Press Cambridge, MA
- Module = Computational Core Module
- Library = Statistical Learning
- Project = Agnostic Learning Bounds under Empirical Loss Minimization Schemes
- Package = Statistical Learning Banach Mercer Kernels
- Author:
- Lakshmi Krishnamurthy
-
Constructor Summary
Constructors Constructor Description MercerKernel(IntegralOperatorEigenContainer ioec)
MercerKernel Constructor -
Method Summary
Modifier and Type Method Description IntegralOperatorEigenContainer
eigenComponentSuite()
Retrieve the Suite of Eigen Componentsdouble
evaluate(double[] adblX, double[] adblY)
Compute the Kernel's R^d X R^d To R^1 ValueMethods inherited from class org.drip.learning.kernel.SymmetricRdToNormedR1Kernel
featureSpaceDimension, inputMetricVectorSpace, outputMetricVectorSpace
Methods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
-
Constructor Details
-
MercerKernel
MercerKernel Constructor- Parameters:
ioec
- The Container of the Eigen Components- Throws:
java.lang.Exception
- Thrown if the Inputs are Invalid
-
-
Method Details
-
eigenComponentSuite
Retrieve the Suite of Eigen Components- Returns:
- The Suite of Eigen Components
-
evaluate
public double evaluate(double[] adblX, double[] adblY) throws java.lang.ExceptionDescription copied from class:SymmetricRdToNormedR1Kernel
Compute the Kernel's R^d X R^d To R^1 Value- Specified by:
evaluate
in classSymmetricRdToNormedR1Kernel
- Parameters:
adblX
- Validated Vector Instance XadblY
- Validated Vector Instance Y- Returns:
- The Kernel's R^d X R^d To R^1 Value
- Throws:
java.lang.Exception
- Thrown if the Inputs are invalid
-